EOSAM 2022
Open Access
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 1, 2023
EOSAM 2022
Article Number 25
Number of page(s) 6
DOI https://doi.org/10.1051/jeos/2023024
Published online 17 May 2023
  1. Gröger A., Pedrini G., Claus D., Alekseenko I., Gloeckler F., Reichelt S. (2023) Advantages of holographic imaging through fog, Appl. Opt. 62, D68. [CrossRef] [Google Scholar]
  2. Tippie A.E., Fienup J.R. (2012) Weak-object image reconstructions with single-shot digital holography, weak-object image reconstructions with single-shot digital holography, in: Biomedical optics and 3-D imaging, Optical Society of America, Washington, D.C., p. DM4C.5. [CrossRef] [Google Scholar]
  3. Gross M., Atlan M. (2007) Digital holography with ultimate sensitivity, Opt. Lett. 32, 909. [NASA ADS] [CrossRef] [Google Scholar]
  4. Verpillat F., Joud F., Atlan M., Gross M. (2010) Digital holography at shot noise level, J. Display Technol. 6, 455. [NASA ADS] [CrossRef] [Google Scholar]
  5. Stetson K.A. (1967) Holographic fog penetration, J. Opt. Soc. Am. 57, 1060. [NASA ADS] [CrossRef] [Google Scholar]
  6. Lohmann A., Shuman C. (1973) Image holography through convective fog, Opt. Commun. 7, 93. [NASA ADS] [CrossRef] [Google Scholar]
  7. Dykes J., Nazer Z., Mosk A.P., Muskens O.L. (2020) Imaging through highly scattering environments using ballistic and quasi-ballistic light in a common-path sagnac interferometer, Opt. Express 28, 10386. [NASA ADS] [CrossRef] [Google Scholar]
  8. Locatelli M., Pugliese E., Paturzo M., Bianco V., Finizio A., Pelagotti A., Poggi P., Miccio L., Meucci R., Ferraro P. (2013) Imaging live humans through smoke and flames using far-infrared digital holography, Opt. Express 21, 5379. [NASA ADS] [CrossRef] [Google Scholar]
  9. Marron J.C., Kendrick R.L., Thurman S.T., Seldomridge N.L., Grow T.D., Embry C.W., Bratcher A.T. (2010) Extended-range digital holographic imaging, Extended-range digital holographic imaging, in: Turner M.D., Kamerman G.W. (eds.), Laser Radar Technology and Applications XV, Vol. 7684, International Society for Optics and Photonics (SPIE), Washington, D.C., pp. 493–498. [Google Scholar]
  10. Kanaev A.V., Watnik A.T., Gardner D.F., Metzler C., Judd K.P., Lebow P., Novak K.M., Lindle J.R. (2018) Imaging through extreme scattering in extended dynamic media, Opt. Lett. 43, 3088. [NASA ADS] [CrossRef] [Google Scholar]
  11. Dunsby C., French P. (2003) Techniques for depth-resolved imaging through turbid media including coherence-gated imaging, J. Phys. D – Appl. Phys. 36, R207. [CrossRef] [Google Scholar]
  12. Kijima D., Kushida T., Kitajima H., Tanaka K., Kubo H., Funatomi T., Mukaigawa Y. (2021) Time-of-flight imaging in fog using multiple time-gated exposures, Opt. Express 29, 6453. [NASA ADS] [CrossRef] [Google Scholar]
  13. Caimi F., Dalgleish F. (2010) Performance considerations for continuous-wave and pulsed laser line scan (lls) imaging systems, J. Europ. Opt. Soc. Rap. Public. 5, 10020s. [NASA ADS] [CrossRef] [Google Scholar]
  14. Friesem A.A., Levy U. (1976) Fringe formation in two-wavelength contour holography, Appl. Opt. 15, 3009. [NASA ADS] [CrossRef] [Google Scholar]
  15. Pedrini G., Fröning P., Tiziani H.J., Gusev M.E. (1999) Pulsed digital holography for high-speed contouring that uses a two-wavelength method, Appl. Opt. 38, 3460. [NASA ADS] [CrossRef] [Google Scholar]
  16. Wagner C., Osten W., Seebacher S. (2000) Direct shape measurement by digital wavefront reconstruction and multi-wavelength contouring, Opt. Eng. 39, 79. [NASA ADS] [CrossRef] [Google Scholar]
  17. Carl D., Fratz M., Pfeifer M., Giel D.M., Höfler H. (2009) Multiwavelength digital holography with autocalibration of phase shifts and artificial wavelengths, Appl. Opt. 48, H1. [NASA ADS] [CrossRef] [Google Scholar]
  18. Pedrini G., Alekseenko I., Jagannathan G., Kempenaars M., Vayakis G., Osten W. (2019) Feasibility study of digital holography for erosion measurements under extreme environmental conditions inside the international thermonuclear experimental reactor tokamak, Appl. Opt. 58, A147. [NASA ADS] [CrossRef] [Google Scholar]
  19. Kühn J., Colomb T., Montfort F., Charrière F., Emery Y., Cuche E., Marquet P., Depeursinge C. (2007) Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition, Opt. Express 15, 7231. [CrossRef] [Google Scholar]
  20. Claus D., Alekseenko I., Grabherr M., Pedrini G., Hibst R. (2021) Snap-shot topography measurement via dual-vcsel and dual wavelength digital holographic interferometry, Light: Adv. Manuf. 2, 403. [Google Scholar]
  21. Fratz M., Seyler T., Bertz A., Carl D. (2021) Digital holography in production: an overview, Light: Adv. Manuf. 2, 283. [Google Scholar]
  22. Willomitzer F., Rangarajan P.V., Li F., Balaji M.M., Christensen M.P., Cossairt O. (2021) Fast non-line-of-sight imaging with high-resolution and wide field of view using synthetic wavelength holography, Nat. Commun. 12, 6647. [NASA ADS] [CrossRef] [Google Scholar]
  23. Beer A. (1852) Bestimmung der Absorption des rothen Lichts in farbigen Fluessigkeiten, Ann. Phys. 162, 78. [NASA ADS] [CrossRef] [Google Scholar]
  24. Gabor D. (1948) A new microscopic principle, Nature 161, 777. [CrossRef] [PubMed] [Google Scholar]
  25. Valadão G., Bioucas-Dias J.M. (2007) PUMA: Phase Unwrapping via MAx flows, in: Proceedings of Conference on Telecommunications – ConfTele, Peniche, Portugal, pp. 609–612. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.