EOSAM 2022
Open Access
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 1, 2023
EOSAM 2022
Article Number 16
Number of page(s) 10
DOI https://doi.org/10.1051/jeos/2023012
Published online 07 April 2023
  1. Novovic D., Aspinwall D.K., Dewes R.C., Bowen P., Griffiths B. (2016) The effect of surface and subsurface condition on the fatigue life of Ti–25V–15Cr–2Al–0.2C %wt alloy, CIRP Ann. 65, 1, 523–528. [CrossRef] [Google Scholar]
  2. Brinksmeier E., Klocke F., Lucca D.A., Sölter J., Meyer D. (2014) Process signatures – a new approach to solve the inverse surface integrity problem in machining processes, Procedia CIRP 13, 429–434. [CrossRef] [Google Scholar]
  3. Pan B., Qian K., Xie H., Asundi A. (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review, Meas. Sci. Technol. 20, 6, 062001. [NASA ADS] [CrossRef] [Google Scholar]
  4. Berfield T.A., Patel J.K., Shimmin R.G., Braun P.V., Lambros J., Sottos N.R. (2006) Fluorescent image correlation for nanoscale deformation measurements, Small (Weinheim an der Bergstrasse, Germany) 2, 5, 631–635. [NASA ADS] [CrossRef] [Google Scholar]
  5. Reagan D., Sabato A., Niezrecki C. (2017) Unmanned aerial vehicle acquisition of three-dimensional digital image correlation measurements for structural health monitoring of bridges, in Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2017. SPIE Proceedings, H.F. Wu, A.L. Gyekenyesi, P.J. Shull, T.-Y. Yu (eds.), SPIE, p. 1016909. [Google Scholar]
  6. Yang J., Bhattacharya K. (2019) Augmented Lagrangian digital image correlation, Exp. Mech. 59, 2, 187–205. [CrossRef] [Google Scholar]
  7. Jin H. (2005) Theoretical development for pointwise digital image correlation, Opt. Eng. 44, 6, 067003. [NASA ADS] [CrossRef] [Google Scholar]
  8. Dong Y.L., Pan B. (2017) A review of speckle pattern fabrication and assessment for digital image correlation, Exp. Mech. 57, 8, 1161–1181. [CrossRef] [Google Scholar]
  9. Goodman J.W. (2007) Speckle phenomena in optics: Theory and applications, Roberts, Englewood, CO. [Google Scholar]
  10. Fricke-Begemann T. (2003) Three-dimensional deformation field measurement with digital speckle correlation, Appl. Opt. 42, 34, 6783–6796. [NASA ADS] [CrossRef] [Google Scholar]
  11. Tausendfreund A., Stöbener D., Fischer A. (2021) In-process measurement of three-dimensional deformations based on speckle photography, Appl. Sci. 11, 11, 4981. [CrossRef] [Google Scholar]
  12. Larsson L., Sjödahl M., Thuvander Fredrik (2004) Microscopic 3-D displacement field measurements using digital speckle photography, Opt. Lasers Eng. 41, 5, 767–777. [NASA ADS] [CrossRef] [Google Scholar]
  13. Fu S. (2005) Single-axis combined shearography and digital speckle photography instrument for full surface strain characterization, Opt. Eng. 44, 2, 025602. [NASA ADS] [CrossRef] [Google Scholar]
  14. Fischer A. (2017) Fundamental uncertainty limit for speckle displacement measurements, Appl. Opt. 56, 25, 7013–7019. [NASA ADS] [CrossRef] [Google Scholar]
  15. Schweickhardt L., Tausendfreund A., Stobener D., Fischer A. (2021) Noise reduction in high-resolution speckle displacement measurements through ensemble averaging, Appl. Opt. 60, 7, 1871–1880. [NASA ADS] [CrossRef] [Google Scholar]
  16. Alexe G., Tausendfreund A., Stobener D., Langstadtler L., Herrmann M., Schenck C., Fischer A. (2020) Uncertainty and resolution of speckle photography on micro samples, Nanomanuf. Metrol. 3, 2, 91–104. [CrossRef] [Google Scholar]
  17. Bender N., Ylmaz H., Bromberg Y., Cao H. (2018) Customizing speckle intensity statistics, Optica 5, 5, 595. [CrossRef] [Google Scholar]
  18. Viotti M.R., Kaufmann G.H. (2004) Accuracy and sensitivity of a hole drilling and digital speckle pattern interferometry combined technique to measure residual stresses, Opt. Lasers Eng. 41, 2, 297–305. [NASA ADS] [CrossRef] [Google Scholar]
  19. Song J.L., Yang J.H., Liu F., Lu K. (2018) High temperature strain measurement method by combining digital image correlation of laser speckle and improved RANSAC smoothing algorithm, Opt. Lasers Eng. 111, 8–18. [NASA ADS] [CrossRef] [Google Scholar]
  20. Tausendfreund A., Stöbener D., Fischer A. (2018) Precise in-process strain measurements for the investigation of surface modification mechanisms, J. Manuf. Mater. Process. 2, 1, 9. [Google Scholar]
  21. Tausendfreund A., Borchers F., Kohls E., Kuschel S., Stöbener D., Heinzel C., Fischer A. (2018) Investigations on material loads during grinding by speckle photography, J. Manuf. Mater. Process. 2, 4, 71. [Google Scholar]
  22. Sjödahl M. (1997) Accuracy in electronic speckle photography, Appl. Opt. 36, 13, 2875–2885. [CrossRef] [Google Scholar]
  23. Xu X., Su Y., Zhang Q. (2017) Theoretical estimation of systematic errors in local deformation measurements using digital image correlation, Opt. Lasers Eng. 88, 265–279. [NASA ADS] [CrossRef] [Google Scholar]
  24. Tong J. (2018) Full-field characterisation of crack tip deformation and fatigue crack growth using digital image correlation-a review, Fatigue Fract. Eng. Mater. Struct. 41, 9, 1855–1869. [CrossRef] [Google Scholar]
  25. Kirugulige M.S., Tippur H.V. (2009) Measurement of fracture parameters for a mixed-mode crack driven by stress waves using image correlation technique and high-speed digital photography, Strain 45, 2, 108–122. [CrossRef] [Google Scholar]
  26. Blaber J., Adair B., Antoniou A. (2015) Ncorr: Open-source 2D digital image correlation Matlab software, Exp. Mech. 55, 6, 1105–1122. [CrossRef] [Google Scholar]
  27. Lu H., Cary P.D. (2000) Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient, Exp. Mech. 40, 4, 393–400. [CrossRef] [Google Scholar]
  28. Schreier H.W., Sutton M.A. (2002) Systematic errors in digital image correlation due to undermatched subset shape functions, Exp. Mech. 42, 3, 303–310. [CrossRef] [Google Scholar]
  29. Yu L., Pan B. (2015) The errors in digital image correlation due to overmatched shape functions, Meas. Sci. Technol. 26, 4, 045202. [NASA ADS] [CrossRef] [Google Scholar]
  30. Fung A.K., Chen M.F. (1985) Numerical simulation of scattering from simple and composite random surfaces, J. Opt. Soc. Am. A 2, 12, 2274–2284. [NASA ADS] [CrossRef] [Google Scholar]
  31. Zhou P., Goodson K. (2001) Subpixel displacement and deformation gradient measurement using digital image/speckle correlation, Opt. Eng. 40, 8, 1613–1620. [NASA ADS] [CrossRef] [Google Scholar]
  32. Tausendfreund A., Frerichs F., Stöbener D., Fischer A. (2022) Experimental validation of workpiece deformation simulations by means of rigorous boundary condition analysis, Procedia CIRP 108, 341–345. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.