Open Access
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 1, 2023
Article Number 6
Number of page(s) 7
Published online 09 February 2023
  1. Degnan J.J. (1993) Contributions of space geodesy to geodynamics: technology, American Geophysical Union. pp. 133–162. [CrossRef] [Google Scholar]
  2. Kucharski D., Kirchner G., Koidl F., Fan C., Carman R., Moore C., Dmytrotsa A., Ploner M., Bianco G., Medvedskij M. (2014) Attitude and spin period of space debris Envisat measured by satellite laser ranging, IEEE Trans. Geosci. Remote Sens. 52, 7651. [NASA ADS] [CrossRef] [Google Scholar]
  3. Steindorfer M.A., Kirchner G., Koidl F., Wang Peiyuan, Jilete B., Flohrer T. (2020) Daylight space debris laser ranging, Nat Commun. 11, 1, 3735. [NASA ADS] [CrossRef] [Google Scholar]
  4. Zhulian L., Haitao Z., Yuqiang L., Honglin F., Dongsheng Z. (2017) 53 cm binocular telescope high repetition frequency space debris laser ranging system, Infrared Laser Eng. 46, 7, 0729001. [CrossRef] [Google Scholar]
  5. Xue D., Xingwei H., Qingli S., Zhipeng L., Cunbo F., Haitao Z. (2016) Research of space debris laser ranging system, Infrared Laser Eng. 45, S2, S229002. [CrossRef] [Google Scholar]
  6. Zhang H., Deng H., Wu Z., Tang K., Zhang Z. (2016) Observations of space debris by ground-based laser ranging system, Spacecraft Environ. Eng. 33, 5, 457–462. [Google Scholar]
  7. Li Y., Li R., Li Z., Zhai D., Fu D., Xiong Y. (2015) Application research on space debris laser ranging, Infrared Laser Eng. 44, 11, 3324–3329. [Google Scholar]
  8. Li Y., Li Z., Fu H., Zheng X., He S., Zhai D., Xiong Y. (2011) Experimentation of diffuse reflection laser ranging of space debris, Chin. J. Lasers 38, 0908001. [CrossRef] [Google Scholar]
  9. Meng W., Zhang H., Deng H., et al. (2020) 1.06 μm wavelength based high accuracy satellite laser ranging and space debris detection, Acta Phys. Sin. 69, 1, 019502. [CrossRef] [Google Scholar]
  10. Zhang Z., Zhang H., Long M., Deng H., Wu Z., Meng W. (2019) High precision space debris laser ranging with 4.2 W double-pulse picosecond laser at 1 kHz in 532 nm, Optik 179, 691–699. [NASA ADS] [CrossRef] [Google Scholar]
  11. Long M.L., Deng H.R., Zhang H.F. (2021) Development of multiple pulse picosecond laser with 1 kHz repetition rate and its application in space debris laser ranging, Acta Opt. Sin. 41, 6, 0614001. [CrossRef] [Google Scholar]
  12. Kirchner G., Koidl F., Ploner M., Lauber P., Utzinger J., Schreiber U., Eckl J., Wilkinson M., Sherwood R., Giessen A., Weigel M. (2013) Multistatic laser ranging to space debris, in: 18th International Workshop on Laser Ranging, Fujiyoshida, Japan, pp. 13–0213. [Google Scholar]
  13. Zhang Z., Zhang H., Deng H., et al. (2016) Experiment of laser ranging to space debris by using two receiving telescopes, Infrared Laser Eng. 45, 7, 0102002. [CrossRef] [Google Scholar]
  14. Li C., Li Z., Tang R., et al. (2020) Target distance measurement experiment with a bi-static satellite laser ranging system, Infrared Laser Eng. 49, S1, 0200145. [Google Scholar]
  15. Li Z., Zhai D., Zhang H., et al. (2020) Superconductivity detector applied to daytime satellite laser ranging experiment and research, Infrared Laser Eng. 49, 8, 20190536. [CrossRef] [Google Scholar]
  16. Xue L., Li Z., Zhang L., Zhai D., Li Y., Zhang S., Li M., Kang L., Chen J., Wu P., Xiong Y. (2016) Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength, Opt. Lett. 41, 16, 3848–3851. [NASA ADS] [CrossRef] [Google Scholar]
  17. Sang J., Bennett J.C. (2014) Achievable debris orbit prediction accuracy using laser ranging data from a single station, Adv. Space Res. 54, 1, 119–124. [NASA ADS] [CrossRef] [Google Scholar]
  18. Kim S., Lim H.C., Bennett J.C., et al. (2014) Analysis of space debris orbit prediction using angle and laser ranging data from two tracking sites under limited observation environment, Sensors 20, 7, 1950. [Google Scholar]
  19. Zhang X., Zhao X., Li R., et al. (2019) Research on real-time correction method of laser ranging prediction of non-cooperative target, Astron. Res. Technol. 16, 1, 25–32. [Google Scholar]
  20. Gao J., Liang Z., Han X., et al. (2022) Range prediction deviation real-time correction algorithm for space debris laser ranging, Acta Photonica Sin. 51, 9, 0912002. [CrossRef] [Google Scholar]
  21. Lv C.L., Zhou H., Li H., You L.X., Liu X.Y., Wang Y., Zhang W.J., Chen S.J., Wang Z., Xie X.M. (2017) Large active area superconducting single-nanowire photon detector with a 100 μm diameter, Supercond. Sci. Technol. 30. [Google Scholar]
  22. LiXing Y. (2014) Recent progress on superconducting nanowire single photon detector, Sci. Sin. Inform. 44, 3, 370–388. [CrossRef] [Google Scholar]
  23. Tang R., Li Z., Li Y., Pi X., Su X., Li R., Zhang H., Zhai D., Fu H. (2018) Light curve measurements with a superconducting nanowire single-photon detector, Opt. Lett. 43, 21, 5488–5491. [NASA ADS] [CrossRef] [Google Scholar]
  24. Ye S., Huang C. (2000) Astrogeodynamics, Shandong Science & Technology Press. pp. 91–121. [Google Scholar]
  25. Zhao C., Shang J., Feng Q., Guo J., Wei Z., Li Y. (2016) Space object laser ranging technology and its applications, Science Press. pp. 44–56. [Google Scholar]
  26. Chen Q., Zhang B., Zhang L. (2020) Sixteen-pixel NbN nanowire single photon detector coupled with 300-μm fiber, IEEE Photonics J. 12, 1, 1–12. [NASA ADS] [Google Scholar]
  27. Zhang L., Wan C., Gu M., Xu R., Zhang S., Kang L., Chen J., Wu P. (2015) Dual-lens beam compression for optical coupling in superconducting nanowire single-photon detectors, Sci. Bull. 60, 1434–1438. [NASA ADS] [CrossRef] [Google Scholar]
  28. Haitao Z., Zhulian L., Rufeng T., Dongsheng Z., Rongwang L., Xiaoyu P., Honglin F., Yuqiang L. (2020) Application of array detection technology in laser ranging, Infrared Laser Eng. 49, 10, 20200006. [Google Scholar]
  29. Degnan J.J. (2019) Possible pathways to producing rapid millimeter accuracy normal points, in: 2019 ILRS technical workshop, Stuttgart, Germany, pp. 15. [Google Scholar]
  30. Lebrun F., Léna P., Mignard F., Mugnier L., Pelat D., Rouan D. (2008) L’Observation En Astrophysique, EDP Sciences. pp. 83–95. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.