Open Access
J. Eur. Opt. Society-Rapid Publ.
Volume 19, Number 1, 2023
Article Number 9
Number of page(s) 9
Published online 14 February 2023
  1. Baszanowska E., Otremba Z. (2014) Spectral signatures of fluorescence and light absorption to identify crude oils found in the marine environment, J. Eur. Opt. Soc. 9, 14029. [NASA ADS] [CrossRef] [Google Scholar]
  2. Haule K., Darecki M., Toczek H. (2015) Light penetration in seawater polluted by dispersed oil: results of radiative transfer modelling, J. Eur. Opt. Soc. 10, 15052. [NASA ADS] [CrossRef] [Google Scholar]
  3. Troia B., Passaro V.M.N. (2014) Investigation of a novel silicon-on-insulator Rib-Slot photonic sensor based on the vernier effect and operating at 3.8 mm, J. Eur. Opt. Soc. 9, 14005. [NASA ADS] [CrossRef] [Google Scholar]
  4. Kim Y.J., Platt U. (eds) (2008) Advanced environmental monitoring, Published by Springer. [CrossRef] [Google Scholar]
  5. Jantrania A. (1991) Dealing with oil and grease in restaurant wastewater, Small Flows J. 5, 1. [Google Scholar]
  6. Hadley M.B., Vedanthan R., Fuster V. (2018) Air pollution and cardiovascular disease: a window of opportunity, Nat. Rev. Cardiol. 15, 4, 193–194. [CrossRef] [Google Scholar]
  7. Shalaby A.R.M., AlMuhanna K.A., Shalaby M. (2020) Environmental pollution monitoring: a novel vectorial algorithm technique for oil detection in wastewater, Spectrosc. Lett. 53, 10, 737–744. [NASA ADS] [CrossRef] [Google Scholar]
  8. Air Quality Guidelines for Europe, 2nd ed., WHO Regional Publications, European Series, No. 91. [Google Scholar]
  9. Holloway T., Miller D., Anenberg S., Diao M., Duncan B., Fiore A.M., Henze D.K., Hess J., Kinney P.L., Liu Y., Neu J.L., O’Neill S.M., Odman M.T., Pierce R.B., Russell A.G., Tong D., West J.J., Zondlo M.A. (2021) Satellite monitoring for air quality and health, Annu. Rev. Biomed. Data Sci. 4, 417–447. [CrossRef] [Google Scholar]
  10. Martínez-Trinidad J.F., Carrasco-Ochoa J.A., Brants C., Hancock E.R. (eds), Pattern Recognition, Third Mexican Conference, MCPR 2011, June 29–July 2, 2011, Springer Proceedings, Cancun, Mexico. [Google Scholar]
  11. Griffiths P.R. (1977) Recent applications of Fourier transform infrared spectrometry in chemical and environmental analysis, Appl. Spectrosc. 31, 6, 497–505. [NASA ADS] [CrossRef] [Google Scholar]
  12. Yoon G., Kim Y.-J., Hahn S. (2003) Determination of glucose in whole blood samples by mid-infrared spectroscopy, Appl. Opt. 42, 4. [Google Scholar]
  13. Yano T., Funatsu T., Suehara K.-I., Nakano Y. (2001) Measurement of the concentrations of glucose and citric acid in the aqueous solution of a blood anticoagulant using near infrared spectroscopy, J. Near Infrared Spectrosc. 9, 43–48. [NASA ADS] [CrossRef] [Google Scholar]
  14. Vonach R., Buschmann J., Falkowski R., Schindler R., Lendl B., Kellner R. (1999) Application of mid-infrared transmission spectrometry to the direct determination of glucose in whole blood, Appl. Spectrosc. 52, 6, 820–822. [NASA ADS] [CrossRef] [Google Scholar]
  15. Bhandare P., Mendelson Y., Peura R.A., Janantsch G., Kruse-Jarres J.D., Marbach R., Heise M.H. (1993) Multivariate determination of glucose in whole blood using partial least-squares and artificial neural networks based on mid-infrared spectroscopy, Appl. Spectrosc. 47, 8, 1214–1221. [NASA ADS] [CrossRef] [Google Scholar]
  16. Zeller H., Novak P., Landgraf P. (1989) Blood glucose measurement by infrared spectroscopy, Int. J. Artif. Organs 12, 2, 129–135. [CrossRef] [Google Scholar]
  17. Cirne I., Boaventura J., Guedes Y., Lucas E. (2016) Methods for determination of oil and grease contents in wastewater from the petroleum industry, Chem. Chem. Technol. 10, 4, 437–444. [CrossRef] [Google Scholar]
  18. Goldenstein C.S., Miller V.A., Mitchell Spearrin R., Strand C.L. (2017) integrated spectroscopic modelling of atomic and molecular gases, J. Quant. Spectrosc. Radiat. Transf. 200, 249. [NASA ADS] [CrossRef] [Google Scholar]
  19. Haaland D., Easterling R., Vopicka D. (1985) Multivariate least-squares methods applied to the quantitative spectral analysis of multicomponent samples, Appl. Spectrosc. 39, 73–84. [NASA ADS] [CrossRef] [Google Scholar]
  20. Griffiths P.R., Bowie B.T. (2000) Measurement of the sensitivity and photometric accuracy of FT-IR spectrometers, Appl. Spectrosc. 54, 8, 1192–1202. [NASA ADS] [CrossRef] [Google Scholar]
  21. Burns D.A., Ciurczak E.W. (2001) Handbook of near-infrared analysis, Marcel Dekker Inc., New York. [CrossRef] [Google Scholar]
  22. Oran Brigham E. (1988) The fast Fourier transform and its applications, Prentice Hall, Englewood Cliffs, New Jersey. [Google Scholar]
  23. Griffiths P.R., de Haseth J.A. (2007) Fourier transform infrared spectrometry, 2nd ed., Wiley-Interscience. [CrossRef] [Google Scholar]
  24. Hirschfeld T. (1978) Dynamic range improvement in Fourier transform infrared spectrometry, Anal. Chem. 50, 8, 1225–1226. [CrossRef] [Google Scholar]
  25. Antoon M.K., Koenig J.H., Koenig J.L. (1977) Least-squares curve-fitting of Fourier transform infrared spectra with applications to polymer systems, Appl. Spectrosc. 31, 6, 518–524. [NASA ADS] [CrossRef] [Google Scholar]
  26. Martens H., Naes T. (1992) Multivariate calibration, John Wiley & Sons Inc., Chichester, pp. 180–202. [Google Scholar]
  27. Arnold M.A., Geng L., Zhou X., Small G.W. (1997) Multivariate calibration models based on the direct analysis of near-infrared single-beam spectra, Appl. Spectrosc. 51, 9, 1330–1339. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.