Open Access
Issue
J. Eur. Opt. Society-Rapid Publ.
Volume 18, Number 2, 2022
Article Number 8
Number of page(s) 5
DOI https://doi.org/10.1051/jeos/2022009
Published online 19 September 2022
  1. John S. (1987) Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 2486–2489. https://doi.org/10.1103/PhysRevLett.58.2486. [NASA ADS] [CrossRef] [Google Scholar]
  2. Yablonovitch E. (1987) Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059–2062. https://doi.org/10.1103/PhysRevLett.58.2059. [CrossRef] [PubMed] [Google Scholar]
  3. Joannopoulos J.D. (ed.) (2008) Photonic crystals: Molding the flow of light, 2nd edn., Princeton University Press, Princeton. [Google Scholar]
  4. Sakoda K. (2005) Optical properties of photonic crystals, 2nd edn., Springer-Verlag, Berlin Heidelberg. https://doi.org/10.1007/b138376. [CrossRef] [Google Scholar]
  5. Komikado T., Yoshida S., Umegaki S. (2006) Surface-emitting distributed-feedback dye laser of a polymeric multilayer fabricated by spin coating, Appl. Phys. Lett. 89, 061123. https://doi.org/10.1063/1.2336740. [NASA ADS] [CrossRef] [Google Scholar]
  6. Scotognella F., Monguzzi A., Cucini M., Meinardi F., Comoretto D., Tubino R. (2008) One dimensional polymeric organic photonic crystals for DFB lasers, Int. J. Photoenergy 2008, 389034. https://doi.org/10.1155/2008/389034. [CrossRef] [Google Scholar]
  7. Scotognella F., Monguzzi A., Meinardi F., Tubino R. (2009) DFB laser action in a flexible fully plastic multilayer, Phys. Chem. Chem. Phys. 12, 337–340. https://doi.org/10.1039/B917630F. [Google Scholar]
  8. Scotognella F., Puzzo D.P., Zavelani-Rossi M., Clark J., Sebastian M., Ozin G.A., Lanzani G. (2011) Two-photon poly(phenylenevinylene) DFB laser, Chem. Mater. 23, 805–809. https://doi.org/10.1021/cm102102w. [CrossRef] [Google Scholar]
  9. R. Li Voti (2018) Optimization of a perfect absorber multilayer structure by genetic algorithms, J. Eur. Opt. Soc.-Rapid Publ. 14, 1–12. https://doi.org/10.1186/s41476-018-0079-7. [CrossRef] [Google Scholar]
  10. Li Y., Liu Z., Zhang H., Tang P., Wu B., Liu G. (2019) Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks, Opt. Express 27, 11809–11818. https://doi.org/10.1364/OE.27.011809. [NASA ADS] [CrossRef] [Google Scholar]
  11. Choi S.Y., Mamak M., von Freymann G., Chopra N., Ozin G.A. (2006) Mesoporous Bragg stack color tunable sensors, Nano Lett. 6, 2456–2461. https://doi.org/10.1021/nl061580m. [CrossRef] [Google Scholar]
  12. von Mankowski A., Szendrei-Temesi K., Koschnick C., Lotsch B.V. (2018) Improving analyte selectivity by post-assembly modification of metal-organic framework based photonic crystal sensors, Nanoscale Horiz. 3, 383–390. https://doi.org/10.1039/C7NH00209B. [NASA ADS] [CrossRef] [Google Scholar]
  13. González-Pedro V., Calvo M.E., Míguez H., Maquieira Á. (2019) Nanoparticle Bragg reflectors: A smart analytical tool for biosensing, Biosens. Bioelectron. X 1, 100012. https://doi.org/10.1016/j.biosx.2019.100012. [Google Scholar]
  14. Megahd H., Oldani C., Radice S., Lanfranchi A., Patrini M., Lova P., Comoretto D. (2021) Aquivion–poly(N-vinylcarbazole) holistic flory-huggins photonic vapor sensors, Adv. Opt. Mater. 9, 2002006. https://doi.org/10.1002/adom.202002006. [CrossRef] [Google Scholar]
  15. Megahd H., Lova P., Comoretto D. (2021) Universal Design Rules for Flory-Huggins Polymer Photonic Vapor Sensors, Adv. Opt. Mater. 31, 2009626. https://doi.org/10.1002/adfm.202009626. [Google Scholar]
  16. López C. (2003) Materials aspects of photonic crystals, Adv. Mater. 15, 1679–1704. https://doi.org/10.1002/adma.200300386. [CrossRef] [Google Scholar]
  17. Vardeny Z.V., Nahata A., Agrawal A. (2013) Optics of photonic quasicrystals, Nat. Photon. 7, 177–187. https://doi.org/10.1038/nphoton.2012.343. [NASA ADS] [CrossRef] [Google Scholar]
  18. Wiersma D.S. (2013) Disordered photonics, Nat. Photon. 7, 188–196. https://doi.org/10.1038/nphoton.2013.29. [NASA ADS] [CrossRef] [Google Scholar]
  19. Chiasera A., Scotognella F., Criante L., Varas S., Valle G.D., Ramponi R., Ferrari M. (2015) Disorder in photonic structures induced by random layer thickness, Sci Adv Mater. 7, 1207–1212. https://doi.org/10.1166/sam.2015.2249. [CrossRef] [Google Scholar]
  20. Feigenbaum E., Diest K., Atwater H.A. (2010) Unity-order index change in transparent conducting oxides at visible frequencies, Nano Lett. 10, 2111–2116. https://doi.org/10.1021/nl1006307. [CrossRef] [Google Scholar]
  21. Heo S., Agrawal A., Milliron D.J. (2019) Wide dynamic range in tunable electrochromic Bragg stacks from doped semiconductor nanocrystals, Adv. Funct. Mater. 29, 1904555. https://doi.org/10.1002/adfm.201904555. [CrossRef] [Google Scholar]
  22. Moscardi L., Paternò G.M., Chiasera A., Sorrentino R., Marangi F., Kriegel I., Lanzani G., Scotognella F. (2020) Electro-responsivity in electrolyte-free and solution processed Bragg stacks, J. Mater. Chem. C. 8, 13019–13024. https://doi.org/10.1039/D0TC02437F. [CrossRef] [Google Scholar]
  23. Cerullo G., Manzoni C., Lüer L., Polli D. (2007) Time-resolved methods in biophysics. 4. Broadband pump–probe spectroscopy system with sub-20 fs temporal resolution for the study of energy transfer processes in photosynthesis, Photochem. Photobiol. Sci. 6, 135–144. https://doi.org/10.1039/B606949E. [CrossRef] [Google Scholar]
  24. Blemker M.A., Gibbs S.L., Raulerson E.K., Milliron D.J., Roberts S.T. (2020) Modulation of the visible absorption and reflection profiles of ITO nanocrystal thin films by plasmon excitation, ACS Photonics. 7, 1188–1196. https://doi.org/10.1021/acsphotonics.9b01825. [CrossRef] [Google Scholar]
  25. Haider A.J., Jameel Z.N., Al-Hussaini I.H.M. (2019) Review on: Titanium dioxide applications, Energy Procedia 157, 17–29. https://doi.org/10.1016/j.egypro.2018.11.159. [CrossRef] [Google Scholar]
  26. Khan M.E., Khan M.M., Min B.-K., Cho M.H. (2018) Microbial fuel cell assisted band gap narrowed TiO2 for visible light-induced photocatalytic activities and power generation, Sci. Rep. 8, 1723. https://doi.org/10.1038/s41598-018-19617-2. [NASA ADS] [CrossRef] [Google Scholar]
  27. Born M., Wolf E., Bhatia A.B., Clemmow P.C., Gabor D., Stokes A.R., Taylor A.M., Wayman P.A., Wilcock W.L. (1999) Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light, 7th edn., Cambridge University Press. [CrossRef] [Google Scholar]
  28. Scotognella F., Chiasera A., Criante L., Aluicio-Sarduy E., Varas S., Pelli S., Łukowiak A., Righini G.C., Ramponi R., Ferrari M. (2015) Metal oxide one dimensional photonic crystals made by RF sputtering and spin coating, Ceram. Int. 41, 8655–8659. https://doi.org/10.1016/j.ceramint.2015.03.077. [CrossRef] [Google Scholar]
  29. Kriegel I., Scotognella F., Manna L. (2017) Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives, Phys. Rep. 674, 1–52. https://doi.org/10.1016/j.physrep.2017.01.003. [NASA ADS] [CrossRef] [Google Scholar]
  30. Alam M.Z., De Leon I., Boyd R.W. (2016) Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region, Science 352, 795–797. https://doi.org/10.1126/science.aae0330. [NASA ADS] [CrossRef] [Google Scholar]
  31. Lorenc M., Ziolek M., Naskrecki R., Karolczak J., Kubicki J., Maciejewski A. (2002) Artifacts in femtosecond transient absorption spectroscopy, Appl. Phys. B: Lasers Opt. 74, 19–27. https://doi.org/10.1007/s003400100750. [NASA ADS] [CrossRef] [Google Scholar]
  32. Ekvall K., van der Meulen P., Dhollande C., Berg L.-E., Pommeret S., Naskrecki R., Mialocq J.-C. (2000) Cross phase modulation artifact in liquid phase transient absorption spectroscopy, J. Appl. Phys. 87, 2340–2352. https://doi.org/10.1063/1.372185. [NASA ADS] [CrossRef] [Google Scholar]
  33. Bresci A., Guizzardi M., Valensise C.M., Marangi F., Scotognella F., Cerullo G., Polli D. (2021) Removal of cross-phase modulation artifacts in ultrafast pump–probe dynamics by deep learning, APL Photon. 6, 076104. https://doi.org/10.1063/5.0057404. [NASA ADS] [CrossRef] [Google Scholar]
  34. Johns R.W., Blemker M.A., Azzaro M.S., Heo S., Runnerstrom E.L., Milliron D.J., Roberts S.T. (2017) Charge carrier concentration dependence of ultrafast plasmonic relaxation in conducting metal oxide nanocrystals, J. Mater. Chem. C. 5, 5757–5763. https://doi.org/10.1039/C7TC00600D. [CrossRef] [Google Scholar]
  35. Guo P., Schaller R.D., Ocola L.E., Diroll B.T., Ketterson J.B., Chang R.P.H. (2016) Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum, Nat. Commun. 7, 12892_1–12892_10. https://doi.org/10.1038/ncomms12892. [Google Scholar]
  36. Paternò G.M., Iseppon C., D’Altri A., Fasanotti C., Merati G., Randi M., Desii A., Pogna E.A.A., Viola D., Cerullo G., Scotognella F., Kriegel I. (2018) Solution processable and optically switchable 1D photonic structures, Sci Rep. 8, 1–8. https://doi.org/10.1038/s41598-018-21824-w. [Google Scholar]
  37. Kinoshita S., Yoshioka S., Miyazaki J. (2008) Physics of structural colors, Rep. Prog. Phys. 71, 076401. https://doi.org/10.1088/0034-4885/71/7/076401. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.