Open Access
Review
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 17, Number 1, 2021
Article Number 16
Number of page(s) 26
DOI https://doi.org/10.1186/s41476-021-00163-w
Published online 03 August 2021
  1. Ahmad, H., Ooi, S.I., Tiu, Z.C., Ismail, M.F., Zulkfili, M.Z., Yasin, M., Thambiratnam, K.: Passively Q-switched thulium fluoride fiber laser operating in S-band region using N-doped graphene saturable absorber. Indian J. Phys. (2020). https://doi.org/10.1007/s12648-020-01815-2 [Google Scholar]
  2. Chakravarty U, Gurram S, Kuruvilla A, Upadhyaya BN, Bindra KS, Short pulse generation in active Q-switched Yb-doped all fiber laser and its amplification. Opt. Laser Technol. (2019) 109, 186–192. https://doi.org/10.1016/j.optlastec.2018.07.074 [NASA ADS] [CrossRef] [Google Scholar]
  3. Li L, et al.Mode-Locked Er-Doped Fiber Laser by Using MoS2/SiO2 Saturable Absorber. Nanoscale Res. Lett. (2019) 14, 159. https://doi.org/10.1186/s11671-019-2888-z [Google Scholar]
  4. Salman AA, Al-Janabi A, Triple-wavelength Q-switched ytterbium-doped fiber laser based on tungsten oxide as saturable absorber. Microw. Opt. Technol. Lett. (2020) 62, 62257–2262. https://doi.org/10.1002/mop.32324 [Google Scholar]
  5. Salman AM, Al-Janabi A, Nickel nanoparticles Saturable absorber for multiwavelength pulses generation in ytterbium-doped Fiber laser. Fiber Integr. Opt. (2020) 39, 3109–121. https://doi.org/10.1080/01468030.2020.1768607 [CrossRef] [Google Scholar]
  6. Song H, Wang D, Wang Q, Li L, Passively Q-switched all-fiber lasers generating cylindrical vector beams with 2-dimensional material saturable absorbers. Opt. Fiber Technol. (2018) 45, 71–76. https://doi.org/10.1016/j.yofte.2018.06.001 [NASA ADS] [CrossRef] [Google Scholar]
  7. Wang S, Sun X, Luo Y, Peng G, Surface plasmon resonance sensor based on D-shaped hi-bi photonic crystal fiber. Opt. Commun. (2020) 467, 125675. https://doi.org/10.1016/j.optcom.2020.125675 [NASA ADS] [CrossRef] [Google Scholar]
  8. Pathak, A.K., Singh, V.K.: Theoretical assessment of D-shaped optical fiber chemical sensor associated with nanoscale silver strip operating in near-infrared region. Opt. Quantum Electron. 52(4), (2020). https://doi.org/10.1007/s11082-020-02316-6 [Google Scholar]
  9. Yu H, Chong Y, Zhang P, Ma J, Li D, A D-shaped fiber SPR sensor with a composite nanostructure of MoS2-graphene for glucose detection. Talanta (2020) 219, 121324. https://doi.org/10.1016/j.talanta.2020.121324 [CrossRef] [Google Scholar]
  10. Zakaria R, Mezher MH, Zahid AZG, Rohizat NS, Patel SK, Amiri IS, Nonlinear studies of graphene oxide and its application to moisture detection in transformer oil using D-shaped optical fibre. J. Mod. Opt. (2020) 67, 7619–627. https://doi.org/10.1080/09500340.2020.1760387 [NASA ADS] [CrossRef] [Google Scholar]
  11. Kasim N, Latiff AA, Rusdi MFM, Hisham MB, Harun SW, Razak NF, Short-pulsed Q-switched thulium doped fiber laser with graphene oxide as a saturable absorber. Optik (2018) 168, 462–466. https://doi.org/10.1016/j.ijleo.2018.04.117 [NASA ADS] [CrossRef] [Google Scholar]
  12. Mohammed DZ, Al-Janabi AH, Passively Q-switched erbium doped fiber laser based on double walled carbon nanotubes-polyvinyl alcohol saturable absorber. Laser Phys. (2016) 26, 11115108. https://doi.org/10.1088/1054-660x/26/11/115108 [NASA ADS] [CrossRef] [Google Scholar]
  13. Mohsin Al-Hayali SK, Hadi Al-Janabi A, Triple-wavelength passively Q-switched ytterbium-doped fibre laser using zinc oxide nanoparticles film as a saturable absorber. J. Mod. Opt. (2018) 65, 131559–1564. https://doi.org/10.1080/09500340.2018.1455922 [NASA ADS] [CrossRef] [Google Scholar]
  14. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano (2014) 8, 21102–1120. https://doi.org/10.1021/nn500064s [CrossRef] [Google Scholar]
  15. Chen B, Zhang X, Wu K, Wang H, Wang J, Chen J, Q-switched fiber laser based on transition metal dichalcogenides MoS(2), MoSe (2), WS (2), and WSe (2). Opt. Express (2015) 23, 2026723–26737. https://doi.org/10.1364/OE.23.026723 [NASA ADS] [CrossRef] [Google Scholar]
  16. Mak KF, Shan J, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics (2016) 10, 4216–226. https://doi.org/10.1038/nphoton.2015.282 [NASA ADS] [CrossRef] [Google Scholar]
  17. Tan C-D, Min F, Wang M, Zhang H-R, Zhang Z-H, Discovering patterns with weak-wildcard gaps. IEEE Access (2016) 4, 4922–4932. https://doi.org/10.1109/access.2016.2593953 [CrossRef] [Google Scholar]
  18. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. (2012) 7, 11699–712. https://doi.org/10.1038/nnano.2012.193Nov [CrossRef] [Google Scholar]
  19. Yun, W.S., Han, S.W., Hong, S.C., Kim, I.G., Lee, J.D.: Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2semiconductors (M=Mo, W;X=S, Se, Te). Phys. Rev. B. 85(3), (2012). https://doi.org/10.1103/PhysRevB.85.033305 [Google Scholar]
  20. Zhao N, et al.Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber. Opt. Express (2014) 22, 910906–10913. https://doi.org/10.1364/OE.22.010906 [CrossRef] [Google Scholar]
  21. Bao, Q., Loh, K.P.: Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS NANO. 6, 3677–3694 (2012) [Google Scholar]
  22. Geim AK, Novoselov KS, The rise of graphene. Nat. Mater. (2007) 6, 183–191. https://doi.org/10.1038/nmat1849 [CrossRef] [PubMed] [Google Scholar]
  23. Kelleher EJR, et al.Nanosecond-pulse fiber lasers mode-locked with nanotubes. Appl. Phys. Lett. (2009) 95, 11111108. https://doi.org/10.1063/1.3207828 [NASA ADS] [CrossRef] [Google Scholar]
  24. Lagatsky AA, et al.2 μm solid-state laser mode-locked by single-layer graphene. Appl. Phys. Lett. (2013) 102, 1013113. https://doi.org/10.1063/1.4773990 [NASA ADS] [CrossRef] [Google Scholar]
  25. Li J, et al.Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci. Rep (2016) 6, 30361. https://doi.org/10.1038/srep30361 [NASA ADS] [CrossRef] [Google Scholar]
  26. Li, P., Zhang, G., Zhang, H., Zhao, C., Chi, J., Zhao, Z., Yang, C., Hu, H., Yao, Y.: Q -switched mode-locked Nd:YVO4 laser by topological insulator Bi2Te3 saturable absorber. IEEE Photon. Technol. Lett. 26(19), 1912–1915 (2014). https://doi.org/10.1109/lpt.2014.2341832 [Google Scholar]
  27. Li XH, Wang YS, Zhao W, Zhang W, Yang Z, Hu XH, Wang HS, Wang XL, Zhang YN, Gong YK, Li C, Shen DY, All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter. Laser Phys. (2011) 21, 5940–944. https://doi.org/10.1134/s1054660x11090143 [NASA ADS] [CrossRef] [Google Scholar]
  28. Peng J, Zhan L, Luo S, Shen QS, Generation of Soliton molecules in a Normal-dispersion Fiber laser. IEEE Photon. Technol. Lett. (2013) 25, 10948–951. https://doi.org/10.1109/lpt.2013.2257720 [NASA ADS] [CrossRef] [Google Scholar]
  29. Runge AFJ, Aguergaray C, Provo R, Erkintalo M, Broderick NGR, All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror. Opt. Fiber Technol. (2014) 20, 6657–665. https://doi.org/10.1016/j.yofte.2014.07.010 [NASA ADS] [CrossRef] [Google Scholar]
  30. Scardaci V, Sun Z, Wang F, Rozhin AG, Hasan T, Hennrich F, White IH, Milne WI, Ferrari AC, Carbon nanotube polycarbonate composites for ultrafast lasers. Adv. Mater. (2008) 20, 214040–4043. https://doi.org/10.1002/adma.200800935 [NASA ADS] [CrossRef] [Google Scholar]
  31. Schwierz F, Graphene transistors. Nat. Nanotechnol. (2010) 5, 7487–496. https://doi.org/10.1038/nnano.2010.89Jul [NASA ADS] [CrossRef] [Google Scholar]
  32. Sotor J, et al.Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber. Opt. Express (2014) 22, 55536–5543. https://doi.org/10.1364/OE.22.005536 [NASA ADS] [CrossRef] [Google Scholar]
  33. Sun Z, Hasan T, Ferrari AC, Ultrafast lasers mode-locked by nanotubes and graphene. Phys. E: Low-dimensional Syst. Nanostructures (2012) 44, 61082–1091. https://doi.org/10.1016/j.physe.2012.01.012 [CrossRef] [Google Scholar]
  34. Wang Y, Zhang B, Yang H, Hou J, Su X, Sun Z, He J, Passively mode-locked solid-state laser with absorption tunable graphene saturable absorber mirror. J. Lightwave Technol. (2019) 37, 132927–2931. https://doi.org/10.1109/jlt.2019.2907654 [CrossRef] [Google Scholar]
  35. Wise FW, Chong A, Renninger WH, High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser Photon. Rev. (2008) 2, 1–258–73. https://doi.org/10.1002/lpor.200710041 [Google Scholar]
  36. Woodward R, Kelleher E, 2D saturable absorbers for fibre lasers. Appl. Sci. (2015) 5, 41440–1456. https://doi.org/10.3390/app5041440 [CrossRef] [Google Scholar]
  37. Wu H-Q, Linghu C-Y, Lu H-M, Qian H, Graphene applications in electronic and optoelectronic devices and circuits. Chin. Phys. B (2013) 22, 9098106. https://doi.org/10.1088/1674-1056/22/9/098106 [NASA ADS] [CrossRef] [Google Scholar]
  38. Xia H, et al.Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber. Opt. Express (2014) 22, 1417341–17348. https://doi.org/10.1364/OE.22.017341 [NASA ADS] [CrossRef] [Google Scholar]
  39. Zhang G, Wang Y, Chen Z, Jiao Z, Graphene oxide based reflective saturable absorber for Q-switched and mode-locked YVO4/Nd:YVO4/YVO4laser. J. Opt. (2018) 20, 5055505. https://doi.org/10.1088/2040-8986/aab7a6 [NASA ADS] [CrossRef] [Google Scholar]
  40. Zhang H, Tang DY, Zhao LM, Bao QL, Loh KP, Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express (2009) 17, 1917630–17635. https://doi.org/10.1002/adfm.200901007 [NASA ADS] [CrossRef] [Google Scholar]
  41. Zhang, X., et al.: Saturable absorption in graphene at 800-nm band. Optoelectronic Devices And Integration Iv. 8555, 855512 (2012). https://doi.org/10.1117/12.999624 [Google Scholar]
  42. Zhao L, Li D, Li L, Wang X, Geng Y, Shen D, Su L, Route to larger pulse energy in ultrafast fiber lasers. IEEE J. Selected Top. Quantum Electron. (2018) 24, 31–9. https://doi.org/10.1109/jstqe.2017.2771739 [Google Scholar]
  43. Zhong Y, Cai Z, Wu D, Cheng Y, Peng J, Weng J, Luo Z, Xu B, Xu H, Passively Q-switched red Pr3+−doped fiber laser with graphene-oxide saturable absorber. IEEE Photon. Technol. Lett. (2016) 28, 161755–1758. https://doi.org/10.1109/lpt.2016.2550859 [NASA ADS] [CrossRef] [Google Scholar]
  44. Dzhibladze MI, Esiashvili ZG, TeplitskiT ES, Isaev SK, Sagaradze VR, Mode locking in a fiber laser. IOP Sci. (1983) 13, 2245–246. [Google Scholar]
  45. Martinez A, Sun Z, Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics (2013) 7, 11842–845. https://doi.org/10.1038/nphoton.2013.304 [NASA ADS] [CrossRef] [Google Scholar]
  46. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari, “Nanotubeâ “Polymer composites for ultrafast photonics,” Adv. Mater.,21, 38â “39, 3874–3899, 2009, doi: https://doi.org/10.1002/adma.200901122, [Google Scholar]
  47. Gerosa RM, Suarez FG, Vianna PG, Domingues SH, de Matos CJS, One-step deposition and in-situ reduction of graphene oxide in photonic crystal fiber for all-fiber laser mode locking. Opt. Laser Technol. (2020) 121, 105838. https://doi.org/10.1016/j.optlastec.2019.105838 [NASA ADS] [CrossRef] [Google Scholar]
  48. Martinez A, Fuse K, Xu B, Yamashita S, Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive modelocked lasing. Opt. Express (2010) 18, 2223054–23061. https://doi.org/10.1364/OE.18.023054 [NASA ADS] [CrossRef] [Google Scholar]
  49. Yanagida T, Watanabe K, Okada G, Kawaguchi N, Optical, scintillation and radiation tolerance properties of Pr-doped pyrosilicate crystals. Jpn J. Appl. Phys. (2018) 57, 10106401. https://doi.org/10.7567/jjap.57.106401 [CrossRef] [Google Scholar]
  50. Zhang M, Kelleher EJR, Pozharov AS, Obraztsova ED, Popov SV, Taylor JR, Passive synchronization of all-fiber lasers through a common saturable absorber. Opt. Lett. (2011) 36, 203984–3986. https://doi.org/10.1364/OL.36.003984 [NASA ADS] [CrossRef] [Google Scholar]
  51. Ni ZH, Wang HM, Kasim J, Fan HM, Yu T, Wu YH, Feng YP, Shen ZX, Graphene thickness determination using reflection and contrast spectroscopy. Am. Chem. Soc. (2007) 7, 2758–2763. [Google Scholar]
  52. Bo F, Yi H, Xiaosheng X, Hongwei Z, Zhipei S, Changxi Y, Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 μm. IEEE J. Selected Top. Quantum Electron. (2014) 20, 5411–415. https://doi.org/10.1109/jstqe.2014.2302361 [NASA ADS] [CrossRef] [Google Scholar]
  53. Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen ZX, Loh KP, Tang DY, Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. (2009) 19, 193077–3083. https://doi.org/10.1002/adfm.200901007 [CrossRef] [Google Scholar]
  54. Dai T, Liu X, Lei W, Zhang J, Passively Q-Switched Nd:YVO4 Laser Based on Silver-Plated Graphene Saturable Absorber (2019) IEEE [Google Scholar]
  55. Wang YY, et al.Raman Studies of monolayer graphene: the substrate effect. Am. Chem. Soc. (2008) 12, 10637–10639. [Google Scholar]
  56. Ni ZH, Wang Y y, Yu T, Shen ZX, Wang H m, Wu YH, Chen W, Shen Wee AT, Raman studies of monolayer graphene: the substrate effect. J. Phys. Chem. C (2008) 112, 10637–10639. https://doi.org/10.1021/jp8008404 [NASA ADS] [CrossRef] [Google Scholar]
  57. Zheng Z, Zhao C, Lu S, Chen Y, Li Y, Zhang H, Wen S, Microwave and optical saturable absorption in graphene. Opt. Express (2012) 20, 2123201–23214. https://doi.org/10.1364/OE.20.023201 [CrossRef] [Google Scholar]
  58. Zhu Y, et al.Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. (2010) 22, 353906–3924. https://doi.org/10.1002/adma.201001068 [CrossRef] [Google Scholar]
  59. Park S, Ruoff RS, Chemical methods for the production of graphenes. Nat. Nanotechnol. (2009) 4, 4217–224. https://doi.org/10.1038/nnano.2009.58Apr [CrossRef] [Google Scholar]
  60. Ghanbari H, Shafikhani MA, Daryalaal M, Graphene nanosheets production using liquid-phase exfoliation of pre-milled graphite in dimethylformamide and structural defects evaluation. Ceram. Int. (2019) 45, 1620051–20057. https://doi.org/10.1016/j.ceramint.2019.06.267 [CrossRef] [Google Scholar]
  61. Chakrabarti MH, Manan NSA, Brandon NP, Maher RC, Mjalli FS, AlNashef IM, Hajimolana SA, Hashim MA, Hussain MA, Nir D, One-pot electrochemical gram-scale synthesis of graphene using deep eutectic solvents and acetonitrile. Chem. Eng. J. (2015) 274, 213–223. https://doi.org/10.1016/j.cej.2015.03.083 [CrossRef] [Google Scholar]
  62. Hossain ST, Wang R, Electrochemical exfoliation of graphite: effect of temperature and hydrogen peroxide addition. Electrochim. Acta (2016) 216, 253–260. https://doi.org/10.1016/j.electacta.2016.09.022 [CrossRef] [Google Scholar]
  63. Yu P, Lowe SE, Simon GP, Zhong YL, Electrochemical exfoliation of graphite and production of functional graphene. Curr. Opin. Colloid Interface Sci. (2015) 20, 5–6329–338. https://doi.org/10.1016/j.cocis.2015.10.007 [CrossRef] [Google Scholar]
  64. Murdock AT, van Engers CD, Britton J, Babenko V, Meysami SS, Bishop H, Crossley A, Koos AA, Grobert N, Targeted removal of copper foil surface impurities for improved synthesis of CVD graphene. Carbon (2017) 122, 207–216. https://doi.org/10.1016/j.carbon.2017.06.075 [CrossRef] [Google Scholar]
  65. Rodriguez CLC, Kessler F, Dubey N, Rosa V, Fechine GJM, CVD graphene transfer procedure to the surface of stainless steel for stem cell proliferation. Surf. Coat. Technol. (2017) 311, 10–18. https://doi.org/10.1016/j.surfcoat.2016.12.111 [CrossRef] [Google Scholar]
  66. Gao H, Xue C, Hu G, Zhu K, Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO2/H2O medium. Ultrason. Sonochem. (2017) 37, 120–127. https://doi.org/10.1016/j.ultsonch.2017.01.001Jul [CrossRef] [Google Scholar]
  67. Gao H, Zhu K, Hu G, Xue C, Large-scale graphene production by ultrasound-assisted exfoliation of natural graphite in supercritical CO 2 /H 2 O medium. Chem. Eng. J. (2017) 308, 872–879. https://doi.org/10.1016/j.cej.2016.09.132 [CrossRef] [Google Scholar]
  68. Hadi A, Karimi-Sabet J, Moosavian SMA, Ghorbanian S, Optimization of graphene production by exfoliation of graphite in supercritical ethanol: a response surface methodology approach. J. Supercrit. Fluids (2016) 107, 92–105. https://doi.org/10.1016/j.supflu.2015.08.022 [CrossRef] [Google Scholar]
  69. Song N, Jia J, Wang W, Gao Y, Zhao Y, Chen Y, Green production of pristine graphene using fluid dynamic force in supercritical CO2. Chem. Eng. J. (2016) 298, 198–205. https://doi.org/10.1016/j.cej.2016.04.022 [CrossRef] [Google Scholar]
  70. Chia JSY, Tan MTT, SimKhiew P, Chin JK, Lee H, Bien DCS, Teh AS, Siong CW, Facile synthesis of few-layer graphene by mild solvent thermal exfoliation of highly oriented pyrolytic graphite. Chem. Eng. J. (2013) 231, 1–11. https://doi.org/10.1016/j.cej.2013.06.106 [CrossRef] [Google Scholar]
  71. Keller U, Recent developments in compact ultrafast lasers. Nature (2003) 424, 831–838. https://doi.org/10.1038/nature01938 [CrossRef] [Google Scholar]
  72. Keller U, Semiconductor Saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Selected Top. Quantum Electron. (1996) 2, 3435–453. https://doi.org/10.1109/2944.571743 [NASA ADS] [CrossRef] [Google Scholar]
  73. Keller U, Miller DAB, Boyd GD, Chiu TH, Ferguson JF, Asom MT, Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber. Opt. Lett. (1992) 17, 7505–507. https://doi.org/10.1364/OL.17.000505 [NASA ADS] [CrossRef] [Google Scholar]
  74. Zhu X, Chen S, Study of a graphene saturable absorber film fabricated by the optical deposition method. IEEE Photon. J. (2019) 11, 61–9. https://doi.org/10.1109/jphot.2019.2948940 [Google Scholar]
  75. Yan Z, Li T, Zhao J, Zhao S, Yang K, Li G, Li D, Zhang S, Li J, Tungsten ditelluride for a nanosecond Ho,Pr:LiLuF4 laser at 2.95 μm. Laser Phys. Lett. (2018) 15, 4045801. https://doi.org/10.1088/1612-202X/aaa94b [NASA ADS] [CrossRef] [Google Scholar]
  76. Set SY, Yaguchi H, Tanaka Y, Jablonski M, Ultrafast Fiber pulsed lasers incorporating carbon nanotubes. IEEE J. Selected Top. Quantum Electron. (2004) 10, 1137–146. https://doi.org/10.1109/jstqe.2003.822912 [NASA ADS] [CrossRef] [Google Scholar]
  77. Kajikawa S, Yoshida M, Ishii O, Yamazaki M, Fujimoto Y, Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene. Opt. Commun. (2018) 424, 13–16. https://doi.org/10.1016/j.optcom.2018.04.024 [NASA ADS] [CrossRef] [Google Scholar]
  78. Sotor J, Sobon G, Abramski KM, Er-doped fibre laser mode-locked by mechanically exfoliated graphene saturable absorber. Opto−Electron. (2012) 20, 4362–366. https://doi.org/10.2478/s11772−012−0043−9 [Google Scholar]
  79. Ahmad H, Soltani S, Thambiratnam K, Q-switched erbium-doped fiber laser with molybdenum disulfide (MoS2) nanoparticles on D-shaped fiber as saturable absorber. J. Nonlin. Opt. Phys. Mater. (2019) 28, 031950026. https://doi.org/10.1142/s0218863519500267 [CrossRef] [Google Scholar]
  80. Chen T, Liao C, Wang DN, Wang Y, Passively mode-locked fiber laser by using monolayer chemical vapor deposition of graphene on D-shaped fiber. Appl. Opt. (2014) 53, 132828–2832. https://doi.org/10.1364/AO.53.002828 [CrossRef] [Google Scholar]
  81. Zapata JD, Steinberg D, Saito LA, de Oliveira RE, Cardenas AM, de Souza EA, Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation. Sci. Rep. (2016) 6, 20644. https://doi.org/10.1038/srep20644 [NASA ADS] [CrossRef] [Google Scholar]
  82. Zapata, J.D., Steinberg, D., Saito, L.A.M., de Oliveira, R.E.P., Cárdenas, A.M., de Souza, E.A.T.: Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation. Sci. Rep. 6(1), (2016). https://doi.org/10.1038/srep20644 [Google Scholar]
  83. Aiub EJ, Steinberg D, Thoroh de Souza EA, Saito LAM, 200-fs mode-locked Erbium-doped fiber laser by using mechanically exfoliated MoS<sub>2</sub> saturable absorber onto D-shaped optical fiber. Opt. Express (2017) 25, 910546–10552. https://doi.org/10.1364/OE.25.010546 [NASA ADS] [CrossRef] [Google Scholar]
  84. Gerosa RM, Steinberg D, Pellicer FN, Domingues SH, Souza EAT d, Saito LAM, 300-fs mode-locked Erbium doped fiber laser using evanescent field interaction through graphene oxide saturable absorber in D-shaped fibers. Latin America Optics and Photonics Conference (2016) [Google Scholar]
  85. Steinberg D, et al.Graphene oxide and reduced graphene oxide as saturable absorbers onto D-shaped fibers for sub 200-fs EDFL mode-locking. Opt. Mater. Express (2017) 8, 1144. https://doi.org/10.1364/ome.8.000144 [Google Scholar]
  86. Yang HR, Switchable dual-wavelength fiber laser mode-locked by monolayer graphene on D-shaped fiber. J. Mod. Opt. (2015) 62, 171363–1367. https://doi.org/10.1080/09500340.2015.1039616 [NASA ADS] [CrossRef] [Google Scholar]
  87. Huang Q, Zou C, Wang T, Al Araimi M, Rozhin A, Mou C, Influence of average cavity dispersion and spectral bandwidth on passively harmonic mode locked L-band Er-doped Fiber laser. IEEE J. Selected Top. Quantum Electron. (2019) 25, 41–8. https://doi.org/10.1109/jstqe.2019.2924869 [Google Scholar]
  88. Ahmad H, Reduan SA, Yusoff N, Ismail MF, Aidit SN, Mode-locked pulse generation in erbium-doped fiber laser by evanescent field interaction with reduced graphene oxide-titanium dioxide nanohybrid. Opt. Laser Technol. (2019) 118, 93–101. https://doi.org/10.1016/j.optlastec.2019.05.015 [NASA ADS] [CrossRef] [Google Scholar]
  89. Ahmad H, Soltani S, Thambiratnam K, Yasin M, Tiu ZC, Mode-locking in Er-doped fiber laser with reduced graphene oxide on a side-polished fiber as saturable absorber. Opt. Fiber Technol. (2019) 50, 177–182. https://doi.org/10.1016/j.yofte.2019.03.023 [NASA ADS] [CrossRef] [Google Scholar]
  90. Salim MAM, Ismail MA, Razak MZA, Azzuhri SR, Generation of Ultrafast Erbium-Doped Fiber Laser (EDFL) utilizing Graphene Thin Film. J. Phys.: Conf. Ser. (2020) 1484, 012026. https://doi.org/10.1088/1742-6596/1484/1/012026 [NASA ADS] [CrossRef] [Google Scholar]
  91. Chen Z-D, et al.Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser. Chin. Phys. B (2018) 27, 8084206. https://doi.org/10.1088/1674-1056/27/8/084206 [NASA ADS] [CrossRef] [Google Scholar]
  92. Wang P, Xu X, Guo Z, Jin X, Shi G, 926 nm Yb-doped fiber femtosecond laser system for two-photon microscopy. Appl. Phys. Express (2019) 12, 3032008. https://doi.org/10.7567/1882-0786/aafe8a [NASA ADS] [CrossRef] [Google Scholar]
  93. Haris H, Harun SW, Jusoh Z, Generation of bound state of solitons pulses with graphene in erbium-doped fiber laser cavity. J. Phys. Conf. Ser. (2019) 1151, https://doi.org/10.1088/1742-6596/1151/1/012017 [NASA ADS] [CrossRef] [Google Scholar]
  94. Pawliszewska M, Martynkien T, Przewloka A, Sotor J, Dispersion-managed Ho-doped fiber laser mode-locked with a graphene saturable absorber. Opt. Lett. (2018) 43, 138–41. https://doi.org/10.1364/OL.43.000038 [NASA ADS] [CrossRef] [Google Scholar]
  95. Wang C, et al.Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser. Nanotechnology (2019) 30, 2025204. https://doi.org/10.1088/1361-6528/aae8c1 [Google Scholar]
  96. Steinberg D, Zapata JD, Thoroh de Souza EA, Saito LAM, Mechanically exfoliated graphite onto D-shaped optical Fiber for femtosecond mode-locked erbium-doped fiber laser. J. Lightwave Technol. (2018) 36, 101868–1874. https://doi.org/10.1109/jlt.2018.2793764 [CrossRef] [Google Scholar]
  97. Uehara H, Tokita S, Kawanaka J, Konishi D, Murakami M, Yasuhara R, A passively Q-switched compact Er:Lu2O3 ceramics laser at 2.8 μm with a graphene saturable absorber. Appl. Phys. Express (2019) 12, 2022002. https://doi.org/10.7567/1882-0786/aaf994 [NASA ADS] [CrossRef] [Google Scholar]
  98. Ahmad H, Albaqawi HS, Yusoff N, Reduan SA, Yi CW, Reduced Graphene Oxide-Silver Nanoparticles for Optical Pulse Generation in Ytterbium- and Erbium-Doped Fiber Lasers. Sci. Rep. (2020) 10, 19408. https://doi.org/10.1038/s41598-020-66253-w [NASA ADS] [CrossRef] [Google Scholar]
  99. Kim H, Cho J, Jang S-Y, Song Y-W, Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers. Appl. Phys. Lett. (2011) 98, 2021104. https://doi.org/10.1063/1.3536502 [NASA ADS] [CrossRef] [Google Scholar]
  100. Li T-C, Han C-F, Hsieh K-C, Lin J-F, Effects of thin titanium and graphene depositions and annealing temperature on electrical, optical, and mechanical properties of IGZO/Ti/graphene/PI specimen. Ceram. Int. (2018) 44, 66573–6583. https://doi.org/10.1016/j.ceramint.2018.01.060 [CrossRef] [Google Scholar]
  101. Saeed, M., Alshammari, Y., Majeed, S.A., Al-Nasrallah, E.: Chemical vapour deposition of graphene-synthesis, characterisation, and applications: a review. Molecules. 25(17), (2020). https://doi.org/10.3390/molecules25173856 [Google Scholar]
  102. Yu, L., Yin, Y., Shi, Y., Dai, D., He, S.: Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica. 3(2), (2016). https://doi.org/10.1364/optica.3.000159 [Google Scholar]
  103. Kawase H, Uehara H, Chen H, Yasuhara R, Passively Q-switched 2.9 μm Er:YAP single crystal laser using graphene saturable absorber. Appl. Phys. Express (2019) 12, 10102006. https://doi.org/10.7567/1882-0786/ab3e61 [CrossRef] [Google Scholar]
  104. Zhang R, Wang J, Liao M, Li X, Kuan PW, Liu Y, Zhou Y, Gao W, Tunable Q-switched fiber laser based on a graphene saturable absorber without additional tuning element. IEEE Photon. J. (2019) 11, 11–10. https://doi.org/10.1109/jphot.2019.2892646 [Google Scholar]
  105. Sobon G, Sotor J, Pasternak I, Grodecki K, Paletko P, Strupinski W, Jankiewicz Z, Abramski KM, Er-doped fiber laser mode-locked by CVD-graphene saturable absorber. J. Lightwave Technol. (2012) 30, 172770–2775. https://doi.org/10.1109/jlt.2012.2207092 [NASA ADS] [CrossRef] [Google Scholar]
  106. Sotor J, Sobon G, Krzempek K, Abramski KM, Fundamental and harmonic mode-locking in erbium-doped fiber laser based on graphene saturable absorber. Opt. Commun. (2012) 285, 13–143174–3178. https://doi.org/10.1016/j.optcom.2012.03.002 [NASA ADS] [CrossRef] [Google Scholar]
  107. Zhu G, Zhu X, Wang F, Xu S, Li Y, Guo X, Balakrishnan K, Norwood RA, Peyghambarian N, Graphene mode-locked Fiber laser at 2.8 μm. IEEE Photon. Technol. Lett. (2016) 28, 17–10. https://doi.org/10.1109/lpt.2015.2478836 [NASA ADS] [CrossRef] [Google Scholar]
  108. Cao WJ, Wang HY, Luo AP, Luo ZC, Xu WC, Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser. Laser Phys. Lett. (2012) 9, 154–58. https://doi.org/10.1002/lapl.201110085 [Google Scholar]
  109. Luo Z, Zhou M, Wu D, Ye C, Weng J, Dong J, Xu H, Cai Z, Chen L, Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped Fiber lasers. J. Lightwave Technol. (2011) 29, 182732–2739. https://doi.org/10.1109/jlt.2011.2164238 [NASA ADS] [CrossRef] [Google Scholar]
  110. Zhang H, Bao Q, Tang D, Zhao L, Loh K, Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl. Phys. Lett. (2009) 95, 14141103. https://doi.org/10.1063/1.3244206 [NASA ADS] [CrossRef] [Google Scholar]
  111. Liu XM, et al.Graphene-clad microfibre saturable absorber for ultrafast fibre lasers. Sci. Rep. (2016) 6, 26024. https://doi.org/10.1038/srep26024 [Google Scholar]
  112. Lv R-d, et al.Carboxyl graphene oxide solution saturable absorber for femtosecond mode-locked erbium-doped fiber laser. Chin. Phys. B (2018) 27, 11114214. https://doi.org/10.1088/1674-1056/27/11/114214 [NASA ADS] [CrossRef] [Google Scholar]
  113. Wang Z, Zhu SE, Chen Y, Wu M, Zhao C, Zhang H, Janssen GCAM, Wen S, Multilayer graphene for Q-switched mode-locking operation in an erbium-doped fiber laser. Opt. Commun. (2013) 300, 17–21. https://doi.org/10.1016/j.optcom.2013.03.010 [NASA ADS] [CrossRef] [Google Scholar]
  114. Xu J, Wu S, Liu J, Wang Q, Yang Q-H, Wang P, Nanosecond-pulsed erbium-doped fiber lasers with graphene saturable absorber. Opt. Commun. (2012) 285, 21–224466–4469. https://doi.org/10.1016/j.optcom.2012.07.012 [NASA ADS] [CrossRef] [Google Scholar]
  115. Fu B, Gui L, Zhang W, Xiao X, Zhu H, Yang C, Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber. Opt. Commun. (2013) 286, 304–308. https://doi.org/10.1016/j.optcom.2012.09.026 [NASA ADS] [CrossRef] [Google Scholar]
  116. Sobon G, Sotor J, Abramski KM, Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz. Appl. Phys. Lett. (2012) 100, 16161109. https://doi.org/10.1063/1.4704913 [NASA ADS] [CrossRef] [Google Scholar]
  117. Peng J, Zhan L, Luo S, Shen Q, Passive harmonic mode-locking of dissipative solitons in a normal-dispersion Er-doped fiber laser. J. Lightwave Technol. (2013) 31, 162709–2714. https://doi.org/10.1109/jlt.2013.2271773 [NASA ADS] [CrossRef] [Google Scholar]
  118. Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski KM, Multilayer graphene-based saturable absorbers with scalable modulation depth for mode-locked Er- and Tm-doped fiber lasers. Opt. Mater. Express (2015) 5, 122884. https://doi.org/10.1364/ome.5.002884 [CrossRef] [Google Scholar]
  119. Boguslawski J, et al.Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers. Photon. Res. (2015) 3, 4119. https://doi.org/10.1364/prj.3.000119 [Google Scholar]
  120. Chen HR, Tsai CY, Cheng HM, Lin KH, Hsieh WF, Passive mode locking of ytterbium- and erbium-doped all-fiber lasers using graphene oxide saturable absorbers. Opt. Express (2014) 22, 1112880–12889. https://doi.org/10.1364/OE.22.012880 [NASA ADS] [CrossRef] [Google Scholar]
  121. Chen H-R, Tsai C-Y, Chang C-Y, Lin K-H, Chang C-S, Hsieh W-F, Investigation of Graphene dispersion from Kelly sideband in stable mode-locked erbium-doped Fiber laser by few-layer graphene saturable absorbers. J. Lightwave Technol. (2015) 33, 214406–4412. https://doi.org/10.1109/jlt.2015.2471100 [NASA ADS] [CrossRef] [Google Scholar]
  122. Rosa HG, Steinberg D, Zapata JD, Saito LAM, Cardenas AM, Gomes JCV, Thoroh de Souza EA, Raman mapping characterization of all-Fiber CVD monolayer graphene saturable absorbers for erbium-doped fiber laser mode locking. J. Lightwave Technol. (2015) 33, 194118–4123. https://doi.org/10.1109/jlt.2015.2467173 [NASA ADS] [CrossRef] [Google Scholar]
  123. Rosa HG, et al.Controlled stacking of graphene monolayer saturable absorbers for ultrashort pulse generation in erbium-doped fiber lasers. Opt. Mater. Express (2017) 7, 72528. https://doi.org/10.1364/ome.7.002528 [CrossRef] [Google Scholar]
  124. Sobon G, Sotor J, Jagiello J, Kozinski R, Zdrojek M, Holdynski M, Paletko P, Boguslawski J, Lipinska L, Abramski KM, Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt. Express (2012) 20, 1719463–19473. https://doi.org/10.1364/OE.20.019463 [CrossRef] [Google Scholar]
  125. Wang Z, Mu H, Yuan J, Zhao C, Bao Q, Zhang H, Graphene-Bi2Te3 Heterostructure as broadband Saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped Fiber lasers. IEEE J. Selected Top. Quantum Electron. (2017) 23, 1195–199. https://doi.org/10.1109/jstqe.2016.2514784 [NASA ADS] [CrossRef] [Google Scholar]
  126. Sobon G, et al.Linearly polarized, Q-switched Er-doped fiber laser based on reduced graphene oxide saturable absorber. Appl. Phys. Lett. (2012) 101, 24241106. https://doi.org/10.1063/1.4770373 [NASA ADS] [CrossRef] [Google Scholar]
  127. Rosdin RZRRRRZRR, Ahmad FAF, Ali NMANM, Harun SWHSW, Arof HAH, Q-switched Er-doped fiber laser with low pumping threshold using graphene saturable absorber. Chin. Opt. Lett. (2014) 12, 9091404–091408. https://doi.org/10.3788/col201412.091404 [NASA ADS] [CrossRef] [Google Scholar]
  128. Wang ZT, Chen Y, Zhao CJ, Zhang H, Wen SC, Switchable dual-wavelength synchronously Q-switched erbium-doped Fiber laser based on graphene saturable absorber. IEEE Photon. J. (2012) 4, 3869–876. https://doi.org/10.1109/jphot.2012.2199102 [NASA ADS] [CrossRef] [Google Scholar]
  129. Zhao J-Q, et al.Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation. Chin. Phys. Lett. (2012) 29, 11114206. https://doi.org/10.1088/0256-307x/29/11/114206 [NASA ADS] [CrossRef] [Google Scholar]
  130. Z. Cheng, S. Wu, H. Shi, J. Xu, Q.-H. Yang, and P. Wang, “Dissipative soliton resonance in an all-normal-dispersion graphene oxide mode-locked Yb-doped fiber laser” Tech. Dig., 2013 [Google Scholar]
  131. Huang S, Wang Y, Peiguang Y, Zhang G, Zhao J, Li H, Lin R, Cao G, Duan J’, Observation of multipulse bunches in a graphene oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion. Appl. Phys. B (2014) 116, 4939–946. https://doi.org/10.1007/s00340-014-5780-7 [NASA ADS] [CrossRef] [Google Scholar]
  132. Luo Z, Huang Y, Wang J, Cheng H, Cai Z, Ye C, Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited Fiber-taper. IEEE Photon. Technol. Lett. (2012) 24, 171539–1542. https://doi.org/10.1109/lpt.2012.2208100 [NASA ADS] [CrossRef] [Google Scholar]
  133. Li, H., Wang, Y., Yan, P., Cao, G., Zhao, J., Zhang, G., Huang, S., Lin, R.: Passively harmonic mode locking in ytterbium-doped fiber laser with graphene oxide saturable absorber. Opt. Eng. 52, 126102 (2013). https://doi.org/10.1117/1.OE.52.12.126102 [Google Scholar]
  134. Huang SS, et al.Soliton rains in a graphene-oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion. Laser Phys. Lett. (2014) 11, 2025102. https://doi.org/10.1088/1612-2011/11/2/025102 [NASA ADS] [CrossRef] [Google Scholar]
  135. Huaiqin L, et al.Tunable and switchable dual-wavelength dissipative soliton operation of a weak-birefringence all-Normal-dispersion Yb-doped Fiber laser. IEEE Photon. J. (2013) 5, 51501807–1501807. https://doi.org/10.1109/jphot.2013.2281977 [NASA ADS] [CrossRef] [Google Scholar]
  136. Cheng Z, Li H, Shi H, Ren J, Yang QH, Wang P, Dissipative soliton resonance and reverse saturable absorption in graphene oxide mode-locked all-normal-dispersion Yb-doped fiber laser. Opt. Express (2015) 23, 67000–7006. https://doi.org/10.1364/OE.23.007000 [NASA ADS] [CrossRef] [Google Scholar]
  137. Hou L, et al.Femtosecond ytterbium-doped fiber laser mode-locked by carboxyl-functionalized graphene oxide saturable absorber. Appl. Phys. Express (2018) 11, 1012702. https://doi.org/10.7567/apex.11.012702 [NASA ADS] [CrossRef] [Google Scholar]
  138. Huang S, Wang Y, Yan P, Zhao J, Li H, Lin R, Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser. Opt. Express (2014) 22, 1011417–11426. https://doi.org/10.1364/OE.22.011417 [CrossRef] [Google Scholar]
  139. Huang SS, et al.High order harmonic mode-locking in an all-normal-dispersion Yb-doped fiber laser with a graphene oxide saturable absorber. Laser Phys. (2014) 24, 1015001. https://doi.org/10.1088/1054-660x/24/1/015001 [NASA ADS] [CrossRef] [Google Scholar]
  140. Loiko, P.A., et al.: Passive Q-switching of Yb bulk lasers by a graphene saturable absorber. Appl. Phys. B. 122(4), (2016). https://doi.org/10.1007/s00340-016-6384-1 [Google Scholar]
  141. Liu, J., Wu, S., Yang, Q.-h., Wang, P.: Mode-locked and Q-switched Yb-doped fiber lasers with graphene saturable absorber. Optoelectronic Devices And Integration Iv. 8192, 819244 (2011). https://doi.org/10.1117/12.901098 [Google Scholar]
  142. Fan L, Dong Z, Guoyu H, Guo J, Xu C, Li K, Tian J, Song Y, Influence of few-layer WS2 and mono-layer WS2 on passively Q-switched ytterbium-doped fibre lasers. Laser Phys. (2019) 29, 7075104. https://doi.org/10.1088/1555-6611/ab20c2 [NASA ADS] [CrossRef] [Google Scholar]
  143. Yusoff RAM, Jafry AAA, Kasim N, Munajat Y, Harun SW, Halim NAH, Q-switched ytterbium-doped fiber laser using graphene oxide as passive saturable absorber. J. Phys. Conf. Ser. (2019) 1371, https://doi.org/10.1088/1742-6596/1371/1/012004 [Google Scholar]
  144. Zhao F, Wang H, Zhang T, Wang Y, Hu X, Sun C, Zhang W, Passively Q-switched all-fiber Yb-doped lasers based on nonlinear multimode interference†. J. Russ. Laser Res. (2019) 40, 187–93. https://doi.org/10.1007/s10946-019-09774-8 [CrossRef] [Google Scholar]
  145. Ren Y, Feng M, Ren A, Zhang K, Yang J, Sun G, Wang T, Li Z, Li Y, Liu Z, Song F, Dynamics of the passive synchronisation of erbium- and ytterbium-doped fibre Q-switched lasers with a common graphene saturable absorber. Laser Phys. (2019) 29, 8085101. https://doi.org/10.1088/1555-6611/ab23ec [NASA ADS] [CrossRef] [Google Scholar]
  146. Liu J, Wang YG, Qu ZS, Zheng LH, Su LB, Xu J, Graphene oxide absorber for 2 μm passive mode-locking tm:YAlO3 laser. Laser Phys. Lett. (2012) 9, 115–19. https://doi.org/10.1002/lapl.201110087 [CrossRef] [Google Scholar]
  147. Zhang EJRKM, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari AC, Popov SV, Taylor JR, Tm-doped fiber laser mode-locked by graphene-polymer composite. Opt. Soc. Am. (2012) 20, 25077–25084. [Google Scholar]
  148. Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski KM, All-polarization maintaining, graphene-based femtosecond Tm-doped all-fiber laser. Opt. Express (2015) 23, 79339–9346. https://doi.org/10.1364/OE.23.009339 [CrossRef] [Google Scholar]
  149. Zhang M, Kelleher EJR, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari AC, Popov SV, Taylor JR, Tm-doped fiber laser mode-locked by graphene-polymer composite. Opt. Express (2012) 20, 2225077–25084. https://doi.org/10.1364/OE.20.025077 [NASA ADS] [CrossRef] [Google Scholar]
  150. Yan Z, et al.Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution. Opt. Express (2015) 23, 44369–4376. https://doi.org/10.1364/OE.23.004369 [NASA ADS] [CrossRef] [Google Scholar]
  151. Wang J, et al.152 fs nanotube-mode-locked thulium-doped all-fiber laser. Sci Rep (2016) 6, 28885. https://doi.org/10.1038/srep28885 [CrossRef] [Google Scholar]
  152. Liu J, Xia K, Zhang W, Zhu J, Yan B, Yang P, Dai S, Nie Q, Tm-doped all-fiber structured femtosecond laser mode-locked by a novel Chem-Te saturable absorber. Infrared Phys. Technol. (2020) 108, 103343. https://doi.org/10.1016/j.infrared.2020.103343 [CrossRef] [Google Scholar]
  153. Ahmad H, Reduan SA, Ooi SI, Ismail MA, Mechanically exfoliated In2Se3 as a saturable absorber for mode-locking a thulium-doped fluoride fiber laser operating in S-band. Appl Opt (2018) 57, 246937–6942. https://doi.org/10.1364/AO.57.006937 [NASA ADS] [CrossRef] [Google Scholar]
  154. Dou Z, Zhang B, He X, Xu Z, Hou J, High-power and large-energy dissipative soliton resonance in a compact tm-doped all-fiber laser. IEEE Photon. Technol. Lett. (2019) 31, 5381–384. https://doi.org/10.1109/lpt.2019.2895906 [NASA ADS] [CrossRef] [Google Scholar]
  155. Sotor J, et al.All-polarization-maintaining, stretched-pulse Tm-doped fiber laser, mode-locked by a graphene saturable absorber. Opt. Lett. (2017) 42, 81592–1595. https://doi.org/10.1364/OL.42.001592 [CrossRef] [PubMed] [Google Scholar]
  156. Zhang Q, Jiang X, Zhang M, Jin X, Zhang H, Zheng Z, Wideband saturable absorption in metal-organic frameworks (MOFs) for mode-locking Er- and Tm-doped fiber lasers. Nanoscale (2020) 12, 74586–4590. https://doi.org/10.1039/c9nr09330c [Google Scholar]
  157. Xie GQ, et al.Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength. Opt. Mater. Express (2012) 2, 879–883. https://doi.org/10.1364/OME.2.000878 [Google Scholar]
  158. Ahmad H, Samion MZ, Sharbirin AS, Ismail MF, Dual-wavelength, passively Q-switched thulium-doped fiber laser with N-doped graphene saturable absorber. Optik (2017) 149, 391–397. https://doi.org/10.1016/j.ijleo.2017.09.054 [NASA ADS] [CrossRef] [Google Scholar]
  159. Luo Z, Li Y, Huang Y, Zhong M, Wan X, Graphene mode-locked and Qswitched 2-μm Tm/Ho codoped fiber lasers using 1212-nm high-efficient pumping. Opt. Eng. (2016) 55, 8081310(1–6). https://doi.org/10.1117/1.OE.55.8.081310 [Google Scholar]
  160. Ahmad H, Reduan SA, Aidit SN, Yusoff N, Maah MJ, Ismail MF, Tiu ZC, Ternary MoWSe2 alloy saturable absorber for passively Q-switched Yb-, Er- and Tm-doped fiber laser. Opt. Commun. (2019) 437, 355–362. https://doi.org/10.1016/j.optcom.2019.01.009 [NASA ADS] [CrossRef] [Google Scholar]
  161. Ahmad H, Samion MZ, Sharbirin AS, Norizan SF, Aidit SN, Ismail MF, Graphene-PVA saturable absorber for generation of a wavelength-tunable passively Q-switched thulium-doped fiber laser in 2.0μm. Laser Phys. (2018) 28, 5055105. https://doi.org/10.1088/1555-6611/aab2cc [NASA ADS] [CrossRef] [Google Scholar]
  162. Wang Q, Chen T, Zhang B, Li M, Lu Y, Chen KP, All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers. Appl. Phys. Lett. (2013) 102, 13131117. https://doi.org/10.1063/1.4800036 [NASA ADS] [CrossRef] [Google Scholar]
  163. Sotor J, et al.All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber. Opt. Lett. (2016) 41, 112592–2595. https://doi.org/10.1364/OL.41.002592 [NASA ADS] [CrossRef] [Google Scholar]
  164. Liu S, et al.Graphene Q-switched Ho (3+)-doped ZBLAN fiber laser at 1190 nm. Opt. Lett. (2015) 40, 2147–150. https://doi.org/10.1364/OL.40.000147 [CrossRef] [Google Scholar]
  165. Tengfei Dai XL, Lei W, Chang J, Passively Q-Switched Nd:YVO 4 Laser Based on Silver-Plated Graphene Saturable Absorber (2019) IEEE [Google Scholar]
  166. Zhao X, et al.Picometer-Resolution, Dual-Comb Spectroscopy Based on a Dual-Wavelength Mode-Locked Fiber Laser (2016) CLEOhttps://doi.org/10.1364/CLEO_AT.2016.AM4K.4 [Google Scholar]
  167. Hu G, Li T, Pan Y, Zhao X, Zhang M, Zheng Z, Asynchronous and Synchronous Dual-Wavelength Pulse Generation in a Non-zero-Dispersion Fiber Laser (2017) CLEOhttps://doi.org/10.1364/CLEO_AT.2017.JTh2A.134 [Google Scholar]
  168. Chen J, et al.Self-Starting, Turn-Key Dual-Comb Mode-Locked Fiber Laser with a Few-Mode Fiber Filter (2017) CLEOhttps://doi.org/10.1364/CLEO_AT.2017.JW2A.5 [Google Scholar]
  169. Hu, G., et al.: Real-Time Absolute Frequency Measurement of Continuous-Wave Terahertz Radiation Using a Free-Running, Dual-Wavelength, Dual-Comb Mode-Locked Fiber Laser. CLEO (2016) [Google Scholar]
  170. Zhao X, Zheng Z, Liu Y, Hu G, Liu J, “Dual-wavelength, bidirectional single-wall carbon nanotube mode-locked fiber laser,” (in English). IEEE Photon. Technol. Lett. (2014) 26, 171722–1725. https://doi.org/10.1109/lpt.2014.2332000Sep [NASA ADS] [CrossRef] [Google Scholar]
  171. Liu, L., Zheng, Z., Zhao, X., Sun, S., Zhu, J.: Dual-wavelength passively q-switched erbium fiber laser based on a swnt absorber. FiO/LS Tech. Dig. (2012). https://doi.org/10.1364/FIO.2012.FM3G.6 [Google Scholar]
  172. Hu G, Zhang M, Dual-Wavelength Passively Q-Switched Yb-Doped Fiber Laser Based on WS 2 Saturable Absorber and Intracavity Polarization (2016) CLEO [Google Scholar]
  173. Liu L, et al.“Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” (in English). Opt. Commun. (2013) 294, 267–270. https://doi.org/10.1016/j.optcom.2012.11.094 [NASA ADS] [CrossRef] [Google Scholar]
  174. Hu G, et al.Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser. Sci. Rep. (2017) 7, 42082. https://doi.org/10.1038/srep42082 [NASA ADS] [CrossRef] [Google Scholar]
  175. Liu, L., Zhao, X., Zheng, Z., Wang, Q.: Fast, long-scan-range pump-probe measurement using a dual-wavelength mode-locked fiber laser. FiO/LS Tech. Dig. (2012). https://doi.org/10.1364/FIO.2012.FW2A.1 [Google Scholar]
  176. Zhao, X., Gong, Z., Liu, Y., Yang, Y., Hu, G., Zheng, Z.: Coherent dual-comb mode-locked fiber laser based on a birefringent ring cavity. Front. Optics/Laser Sci. (2015). https://doi.org/10.1364/FIO.2015.FW3C.3 [Google Scholar]
  177. Chen, J., et al.: Low-power consumption dual-comb spectroscopy based on a battery-powered, free-running dual-comb laser system. Front. Opt. (2017). https://doi.org/10.1364/FIO.2017.JTu3A.17 [Google Scholar]
  178. Zhao, X., Zheng, Z., Liu, Y., Guan, J., Liu, L., Sun, Y.: High-resolution absolute distance measurement using a dual-wavelength, dual-comb, femtosecond fiber laser. CLEO Tech. Dig. (2012). https://doi.org/10.1364/CLEO_SI.2012.CM2J.4 [Google Scholar]
  179. Zheng Z, Zhao X, High-Resolution, Dual-Comb Asynchronous Sampling Enabled by Dual-Wavelength Ultrafast Fiber Lasers and its Applications. Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (2013) [Google Scholar]
  180. Chen, J., et al.: Dual-wavelength, dual-comb fiber laser based on a nearly-adiabatic fiber-taper filter. Opt. Soc. Am. (2016). https://doi.org/10.1364/FIO.2016.JTh2A.112 [Google Scholar]
  181. Hu, G.: Multiwavelength, subpicosecond pulse generation from a SWNT-SA mode-locked ring birefringent fiber laser. Nonlin. Opt. Fibers. (2015) [Google Scholar]
  182. Liu, Y., et al.: Multi-wavelength dissipative soliton, single-wall carbon nanotube mode-locked fiber laser. FIO/ LS Tech. Dig. (2011) [Google Scholar]
  183. Zhao X, et al.Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning. Opt. Soc. Am. (2011) 19, 1168–1173. https://doi.org/10.1364/JOSAB.28.001168 [Google Scholar]
  184. Hu, G., Pan, Y., Wang, R., Zhao, X., Zhang, M., Zheng, Z.: Synchronous dual-wavelength pulse generation in an er-doped fiber laser with near-zero dispersion. Front. Optics/Laser Sci. (2016). https://doi.org/10.1364/FIO.2016.JW4A.31 [Google Scholar]
  185. Hu G, et al.Terahertz Dual-Comb Spectroscopy with a Free-Running, Dual-Wavelength-Comb Fiber Laser (2017) CLEOhttps://doi.org/10.1364/CLEO_SI.2017.SW4J.1 [Google Scholar]
  186. Zhao, X.: Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning. Opt. Soc. Am. (2011). https://doi.org/10.1364/OE.19.001168 [Google Scholar]
  187. Zhao, X., Zheng, Z., Liu, L., Wang, Q., Chen, H., Liu, J.: Fast, long-scan-range pump-probe measurement based on asynchronous sampling using a dual-wavelength mode-locked fiber laser. Opt. Soc. Am. (2012). https://doi.org/10.1364/OE.20.025584 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.