Open Access
J. Eur. Opt. Soc.-Rapid Publ.
Volume 17, Number 1, 2021
Article Number 12
Number of page(s) 20
Published online 30 June 2021
  1. Aarts R. M., Janssen A. J. E. M., Sound radiation quantities arising from a resilient circular radiator. J. Acoust. Soc. Am. (2009) 126, 41776–1787. [NASA ADS] [CrossRef] [Google Scholar]
  2. Aarts R. M., Janssen A. J. E. M., On-axis and far-field sound radiation from resilient flat and dome-shaped radiators. J. Acoust. Soc. Am. (2009) 125, 31444–1455. [NASA ADS] [CrossRef] [Google Scholar]
  3. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1972). [Google Scholar]
  4. Andreas B., Mana G., Palmisano C., Vectorial ray-based diffraction integral. J. Opt. Soc. Am. A (2015) 32, 81403–1424. [NASA ADS] [CrossRef] [Google Scholar]
  5. Born, M., Wolf, E., Bhatia, A. B., Clemmow, P. C., Gabor, D., Stokes, A. R., Taylor, A. M., Wayman, P. A., Wilcock, W. L.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7edition. Cambridge University Press (1999). [Google Scholar]
  6. Braat J. J. M., Dirksen P., Janssen A. J. E. M., van de Nes A. S., Extended nijboer–zernike representation of the vector field in the focal region of an aberrated high-aperture optical system. J. Opt. Soc. Am. A (2003) 20, 122281–2292. [NASA ADS] [CrossRef] [Google Scholar]
  7. Braat, J. J. M, Haver, S, Janssen, A. J. E. M, Pereira, S. F: Image formation in a multilayer using the extended nijboer-zernike theory. J. Eur. Opt. Soc. Rapid Publ. 4(09048) (2009). [Google Scholar]
  8. Braat J. J. M., Dirksen P., Janssen A. J. E. M., van Haver S., van de Nes A. S., Extended nijboer–zernike approach to aberration and birefringence retrieval in a high-numerical-aperture optical system. J. Opt. Soc. Am. A (2005) 22, 122635–2650. [NASA ADS] [CrossRef] [Google Scholar]
  9. Braat J. J. M., van Haver S., Janssen A. J. E. M., Dirksen P., Assessment of optical systems by means of point-spread functions. Prog. Opt. (2008) 51, 349–468. [NASA ADS] [CrossRef] [Google Scholar]
  10. Carretero L., Acebal P., Blaya S., Diffraction of convergent spherical waves with all possible polarization states using the luneburg integral method. J. Opt. Soc. Am. A (2013) 30, 4733–740. [NASA ADS] [CrossRef] [Google Scholar]
  11. Coëtmellec, S, Remacha, C, Brunel, M, Lebrun, D, Janssen, A: Digital in-line holography with a spatially partially coherent beam. J. Eur. Opt. Soc. Rapid Publ. 6(11060) (2011). [Google Scholar]
  12. Coëtmellec S, Wichitwong W, Gréhan G, Lebrun D, Brunel M, Janssen A. J. E. M, Digital in-line holography assessment for general phase and opaque particle. J. Eur. Opt. Soc. Rapid Publ. (2014) 9, 14021, 06. [Google Scholar]
  13. Davis L. W., Theory of electromagnetic beams. Phys. Rev. A (1979) 19, 1177–1179. [CrossRef] [Google Scholar]
  14. Gouesbet G., and Gréhan, G., Generalized Lorenz-Mie Theories. Physics, Classical Continuum Physics (2011) HeidelbergSpringer Berlin [Google Scholar]
  15. Grare, S, Coëtmellec, S, Allano, D, Grehan, G, Brunel, M, Lebrun, D: Dual wavelength digital holography for 3d particle image velocimetry. J. Eur. Opt. Soc. Rapid Publ. 10(15009) (2015). [Google Scholar]
  16. Janssen, A. J. E. M: New analytic results for the zernike circle polynomials from a basic result in the nijboer-zernike diffraction theory. J. Eur. Opt. Soc. Rapid Publ. 6(11028) (2011). [Google Scholar]
  17. Kim J., Wang Y., Zhang X., Calculation of vectorial diffraction in optical systems. J. Opt. Soc. Am. A (2018) 35, 4526–535. [NASA ADS] [CrossRef] [Google Scholar]
  18. King L. V, On the acoustic radiation field of the piezo-electric ascillator and the effect of the viscosity on transmission. Can. J. Res. (1934) 11, 2135–155. [NASA ADS] [CrossRef] [Google Scholar]
  19. Lewis W. E., Vyas R., Maxwell-gaussian beams with cylindrical polarization. J. Opt. Soc. Am. A (2014) 31, 71595–1603. [NASA ADS] [CrossRef] [Google Scholar]
  20. Luneberg R. K., Mathematical theory of optics (1964) Berkeley and Los AngelesUniversity of California Press [CrossRef] [Google Scholar]
  21. Marathay A. S., McCalmont J. F, On the usual approximation used in the rayleigh–sommerfeld diffraction theory. J. Opt. Soc. Am. A (2004) 21, 4510–516. [NASA ADS] [CrossRef] [Google Scholar]
  22. Masson J. B., Gallot G., Diffraction from a subwavelength elliptic aperture: analytic approximate aperture fields. J. Opt. Soc. Am. A (2012) 29, 92005–2014. [NASA ADS] [CrossRef] [Google Scholar]
  23. Mori M., Discovery of the double exponential transformation and its developments. Publ. RIMS, Kyoto Univ. (2005) 41, 897–935. [CrossRef] [Google Scholar]
  24. Noll R. J., Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am. (1976) 66, 3207–211. [NASA ADS] [CrossRef] [Google Scholar]
  25. Olver F., Lozier D., Boisvert R., Clark C., Nist handbook of mathematical functions (2010) New YorkCambridge University Press [Google Scholar]
  26. Pejchang D., Coëtmellec S., Gréhan G., Brunel M., Lebrun D., Chaari A., Grosges T., Barchiesi D., Recovering the size of nanoparticles by digital in-line holography. Opt. Express (2015) 23, 1418351–18360. [CrossRef] [Google Scholar]
  27. Picart P., Montrésor S., Fages M., Xia H., Guo R., Li J., Solieman O., Durand J. C., Analysis of computerized aided designed and manufactured dental occlusal ceramics with multi-wavelength digital holography. SPECKLE 2018: VII International Conference on Speckle Metrology (2018) Janów Podlaski, PolandSPIE, SPIE [Google Scholar]
  28. Rdzanek W. P., Sound scattering and transmission through a circular cylindrical aperture revisited using the radial polynomials. J. Acoust. Soc. Am. (2018) 143, 31259–1282. [NASA ADS] [CrossRef] [Google Scholar]
  29. Ren, H, Shao, W, Li, Y, Salim, F, Gu, M: Three-dimensional vectorial holography based on machine learning inverse design. Sci. Adv. 6(16) (2020). [Google Scholar]
  30. Romero J. A., Hernández L., Diffraction by a circular aperture: an application of the vectorial theory of huygens’s principle in the near field. J. Opt. Soc. Am. A (2008) 25, 82040–2043. [NASA ADS] [CrossRef] [Google Scholar]
  31. van Haver S., Braat J. M., Janssen A. J. E. M., Janssen O. T. A., Pereira S. F., Vectorial aerial-image computations of three-dimensional objects based on the extended nijboer-zernike theory. J. Opt. Soc. Am. A (2009) 26, 51221–1234. [NASA ADS] [CrossRef] [Google Scholar]
  32. van Haver, S, Janssen, A. J. E. M: Advanced analytic treatment and efficient computation of the diffraction integrals in the extended nijboer-zernike theory. J. Eur. Opt. Soc. Rapid Publ. 8(13044) (2013). [Google Scholar]
  33. van Haver, S, Janssen, A. J. E. M: Truncation of the series expressions in the advanced enz-theory of diffraction integrals. J. Eur. Opt. Soc. Rapid Publ. 9(14042) (2014). [Google Scholar]
  34. Weyl H., Ausbreitung elektromagnetischer wellen über einem ebenen leiter. Ann. Phys. (1919) 60, 481. [NASA ADS] [CrossRef] [Google Scholar]
  35. Yanagawa T., Abe R., Hayasaki Y., Three-dimensional mapping of fluorescent nanoparticles using incoherent digital holography. Opt. Lett. (2015) 40, 143312–3315. [NASA ADS] [CrossRef] [Google Scholar]
  36. Zernike F., Diffraction theory of the knife-edge test and its improved version, the phase-contrast method. Physica (Amsterdam) (1934) 1, 689–704. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.