Open Access
J. Eur. Opt. Soc.-Rapid Publ.
Volume 15, Number 1, 2019
Article Number 22
Number of page(s) 7
Published online 16 October 2019
  1. Lenstra D, Verbeek BH, den Boef AJ, Coherence collapse in single-mode semiconductor lasers due to optical feedback. IEEE J. Quantum Electron. (1985) QE-21, 674–679. [NASA ADS] [CrossRef] [Google Scholar]
  2. Schunk N, Petermann K, Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback. IEEE J. Quantum Electron. (1988) 24, 1242–1247. [NASA ADS] [CrossRef] [Google Scholar]
  3. Tromborg B, Mork J, Stability analysis and the route to chaos for laser diodes with optical feedback. IEEE Photon. Technol. Lett. (1990) 2, 549–552. [NASA ADS] [CrossRef] [Google Scholar]
  4. Mork J, Tromborg N, Mork J, Chaos in semiconductor lasers with optical feedback: theory and experiment. IEEE J. Quantum Electron. (1992) 28, 93–108. [NASA ADS] [CrossRef] [Google Scholar]
  5. Abdulrhmann S, Ahmed M, Okamoto T, Ishimori W, Yamada M, An improved analysis of semiconductor laser dynamics under strong optical feedback. IEEE J. of Sel. Top. Quantum Electron. (2003) 9, 1265–1274. [NASA ADS] [CrossRef] [Google Scholar]
  6. Ahmed M, Yamada M, Field fluctuations and spectral lineshape in semiconductor lasers subjected to optical feedback. J. Appl. Phys. (2004) 95, 7573–7583. [NASA ADS] [CrossRef] [Google Scholar]
  7. Mork J, Mark J, Tromborg B, Route to chaos and competition between relaxation oscillations for a semiconductor laser with optical feedback. Phys. Rev. Lett. (1990) 65, 1999–2002. [Google Scholar]
  8. Mork J, Nonlinear Dynamics and Stochastic Behaviour of Semiconductor Lasers (1989) PhD thesis, Rep. S48, Technical University of Denmark [Google Scholar]
  9. Schunk N, Petermann K, Stability analysis for laser diodes with short external cavities. IEEE Photon. Technol. Lett. (1989) 1, 49–51. [NASA ADS] [CrossRef] [Google Scholar]
  10. Helms J, Petermann K, A simple analytic expression for the stable operation range of laser diodes with optical feedback. IEEE J. Quant. Electron. (1990) 26, 833–836. [NASA ADS] [CrossRef] [Google Scholar]
  11. Lang R, Kobayashi K, External optical feedback effects on semicobductor laser properties. IEEE J. Quantum Electron. (1980) QE 16, 347–355. [NASA ADS] [CrossRef] [Google Scholar]
  12. Tager AA, Petermann K, High frequency oscillations and self-mode locking in short external cavity laser diodes. IEEE J. Quant. Electron. (1994) 30, 1553–1561. [NASA ADS] [CrossRef] [Google Scholar]
  13. Ryan AT, Agrawal GP, Gray GR, Gage EC, Optical-feedback-induced chaos and its control in multimode semiconductor lasers. IEEE J. Quant. Electron. (1994) 30, 668–678. [NASA ADS] [CrossRef] [Google Scholar]
  14. Petermann K, External optical feedback phenomena in semiconductor lasers. IEEE J. Quant. Electron. (1995) 1, 480–489. [NASA ADS] [CrossRef] [Google Scholar]
  15. Tkach EW, Chraplyvy AR, Regimes of feedback effects in 1.5-mm distributed feedback lasers. IEEE J. Lightwave Technol (1986) LT-4, 1655–1961. [NASA ADS] [CrossRef] [Google Scholar]
  16. Lenstra D, Statistical theory of the multistable external-feedback laser. Opt. Commun. (1991) 81, 209–214. [NASA ADS] [CrossRef] [Google Scholar]
  17. Tromborg B, Osmundsen JH, Olesen H, Stability analysis for a semiconductor laser in an external cavity. IEEE J. Quant. Electron. (1984) 20, 1023–1032. [CrossRef] [Google Scholar]
  18. Kao YH, Wang NM, Chen HM, Mode description of routes to chaos in external-cavity coupled semiconductor lasers. IEEE J. Quantum Electron. (1994) 30, 1732–1739. [CrossRef] [Google Scholar]
  19. Ahmed M, Yamada M, Abdulrhmann S, Numerical modeling of the route-to-chaos of semiconductor lasers under optical feedback and its dependence on the external-cavity length. Intl. J. Numer. Model. (2009) 22, 434–445. [CrossRef] [Google Scholar]
  20. Jones RJ, Spencer PS, Lawrence J, Kane DM, Influence of external cavity length on the coherence collapse regime in laser diodes subject to optical feedback. IEE Proc. Optoelectron. (2001) 148, 7–12. [CrossRef] [Google Scholar]
  21. Ahmed M, Bakry A, Altuwirqi R, Alghamdi M, Koyama F, Enhancing modulation bandwidth of semiconductor lasers beyond 50 GHz by strong optical feedback for use in mm-wave radio over fiber links. Jpn. J. Appl. Phys. Rap. Comm. (2013) 53, 124103. [CrossRef] [Google Scholar]
  22. Liu P, Ogawa K, Statistical measurements as a way to study mode partition in injection lasers. J. Lightwave Technol. (1984) LT-2, 44–48. [NASA ADS] [CrossRef] [Google Scholar]
  23. Ogita S, Lowery AJ, Tucker RS, Influence of asymmetric nonlinear gain on the transient of longitudinal modes in long wavelength Fabry–Perot laser diodes. IEEE J. Quantum Electron. (1997) 33, 198–210. [CrossRef] [Google Scholar]
  24. Ogasawara N, Ito R, Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers: I. experiment. Jpn. J. Appl. Phys. (1988) 27, 607–614. [NASA ADS] [CrossRef] [Google Scholar]
  25. Ogasawara N, Ito R, Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers: II. Theory. Jpn. J. Appl. Phys. (1989) 27, 615–626. [Google Scholar]
  26. Ahmed M, Yamada M, Influence of instantaneous mode-competition on the dynamics of semiconductor lasers. IEEE J. Quantum Electron. (2002) 38, 682–693. [NASA ADS] [CrossRef] [Google Scholar]
  27. Yamada M, Ishimori W, Sakaguchi H, Ahmed M, Time dependent measurement of the mode competitl0n phenomena among longitudinal modes in long-wavelength lasers,′ IEEE J. Quantum Electron. (2003) 39, 1548–1554. [NASA ADS] [CrossRef] [Google Scholar]
  28. Ahmed M, Yamada M, Inducing single-mode oscillation in Fabry-Perot InGaAsP lasers by applying external optical feedback. IET Optoelectron. (2010) 4, 133–141. [CrossRef] [Google Scholar]
  29. Ahmed M, Longitudinal-mode competition in semiconductor lasers under external optical feedback: regime of short cavity. Opt. Laser Technol. (2009) 41, 53–63. [NASA ADS] [CrossRef] [Google Scholar]
  30. Green PE, Fibre Optic Networks (1993) Englewood Cliffs, NJPrentice Hall [Google Scholar]
  31. Wiemann C, Hollberg L, Using diode lasers for atomic physics. Rev. Sci. Instrum. (1990) 62, 1–20. [Google Scholar]
  32. Lohman A, Syms RRA, External cavity laser with a vertically etched silicon blazed grating. IEEE Photonic. Techn. L. (2003) 15, 120–122. [NASA ADS] [CrossRef] [Google Scholar]
  33. Rosenblatt D, Sharon A, Friesem AA, Resonant grating waveguide structures. IEEE J. Quantum Elect. (1997) 33, 2038–2205. [CrossRef] [Google Scholar]
  34. Block S, Gamet E, Pigeon F, Semiconductor laser with external resonant grating mirror. IEEE J. Quantum Elect. (2005) 41, 1049–1053. [CrossRef] [Google Scholar]
  35. Yamada M, Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers. J. Appl. Phys. (1989) 66, 81–89. [CrossRef] [Google Scholar]
  36. Osinski M, Buus J, Linewidth broadening factor in semiconductor lasers—an overview. IEEE J. Quantum Electron. (1987) QE-23, 9–29. [NASA ADS] [CrossRef] [Google Scholar]
  37. Hernandez G, Fabry–Perot Interferometers (1986) CambridgeCambridge University Press [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.