Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 15, Number 1, 2019
Highlights of EOSAM 2018
Article Number 8
Number of page(s) 8
DOI https://doi.org/10.1186/s41476-019-0109-0
Published online 04 June 2019
  1. de Boer DKG, Bruls D, Jagt H, High-brightness source based on luminescent concentration. Opt. Express (2016) 24, A1069. https://doi.org/10.1364/OE.24.0A1069 [Google Scholar]
  2. Hoelen C, de Boer DKG, Bruls D, van der Eyden J, Koole R, Li Y, Mirsadeghi M, Vanbroekhoven V, Van den Bergh J-J, Van de Voorde P, LED light engine concept with ultra-high scalable luminance. Proc. SPIE (2016) 9768, 9768–9763. [Google Scholar]
  3. de Boer DKG, Bruls D, Hoelen C, Jagt H, High lumen density sources based on LED-pumped phosphor rods: opportunities for performance improvement. Proc. SPIE (2016) 9896, 9896–9806. [Google Scholar]
  4. de Boer DKG, Bruls D, Jagt H, Hoelen C, LED-based projection source based on luminescent concentration. Proc. SPIE (2017) 10378, 103780M. [Google Scholar]
  5. Hoelen C, Antonis P, de Boer D, Koole R, Kadijk S, Li Y, Vanbroekhoven V, Van de Voorde P, Progress in extremely high brightness LED-based light sources. Proc. SPIE (2017) 10378, 103780N. [Google Scholar]
  6. Barbet A, Paul A, Gallinelli T, Balembois F, Blanchot J-P, Forget S, Chénais S, Druon F, Georges P, Light-emitting diode pumped luminescent concentrators: a new opportunity for low-cost solid-state lasers. Optica (2016) 3, 465. https://doi.org/10.1364/OPTICA.3.000465 [NASA ADS] [CrossRef] [Google Scholar]
  7. Sathian Juna, Breeze Jonathan D., Richards Benjamin, Alford Neil McN., Oxborrow Mark, Solid-state source of intense yellow light based on a Ce:YAG luminescent concentrator. Optics Express (2017) 25, 1213714. https://doi.org/10.1364/OE.25.013714 [NASA ADS] [CrossRef] [Google Scholar]
  8. Goetzberger A, Greubel W, Solar energy conversion with fluorescent collectors. Appl. Phys. (1977) 14, 123–139. https://doi.org/10.1007/BF00883080 [NASA ADS] [CrossRef] [Google Scholar]
  9. Debije MG, Verbunt PPC, Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv. Energy Mater. (2012) 2, 12–35. https://doi.org/10.1002/aenm.201100554 [CrossRef] [Google Scholar]
  10. de Boer DKG, Broer DJ, Debije MG, Keur W, Meijerink A, Ronda CR, Verbunt PPC, Progress in phosphors and filters for luminescent solar concentrators. Opt. Express (2012) 20, A395. https://doi.org/10.1364/OE.20.00A395 [NASA ADS] [CrossRef] [Google Scholar]
  11. McKenna Barry, Evans Rachel C., Towards Efficient Spectral Converters through Materials Design for Luminescent Solar Devices. Advanced Materials (2017) 29, 281606491. https://doi.org/10.1002/adma.201606491 [NASA ADS] [CrossRef] [Google Scholar]
  12. Yablonovitch E, Thermodynamics of the fluorescent planar concentrator. J. Opt. Soc. Am. (1980) 70, 1362–1363. https://doi.org/10.1364/JOSA.70.001362 [NASA ADS] [CrossRef] [Google Scholar]
  13. Roelandt S, Meuret Y, de Boer DKG, Bruls D, Van De Voorde P, Thienpont H, In- and Outcoupling of Light from a Luminescent Rod Using a Compound Parabolic Concentrator (CPC). Optical Eng (2015) 54, 055101. https://doi.org/10.1117/1.OE.54.5.055101 [NASA ADS] [CrossRef] [Google Scholar]
  14. Sellami N, Mallick TP, Optical efficiency study of PV crossed compound parabolic concentrator. Appl. Energy (2013) 102, 868. https://doi.org/10.1016/j.apenergy.2012.08.052 [CrossRef] [Google Scholar]
  15. Davenport TLR, Hough TA, Cassarly WJ, Optimization for efficient angle-to-area conversion in illumination systems. Proc. SPIE (2004) 5524, 93. https://doi.org/10.1117/12.560158 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.