Open Access

This article has an erratum: [https://doi.org/10.1186/s41476-021-00160-z]


Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 15, Number 1, 2019
Article Number 10
Number of page(s) 7
DOI https://doi.org/10.1186/s41476-019-0107-2
Published online 07 June 2019
  1. Dragoman D, Complex conjugate media: alternative configurations for miniaturized lasers. Opt. Commun. (2011) 284, 2095–2098. https://doi.org/10.1016/j.optcom.2010.12.069 [NASA ADS] [CrossRef] [Google Scholar]
  2. Rao S, Wilton D, Glisson A, Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. (1982) 30, 409–418. https://doi.org/10.1109/TAP.1982.1142818 [NASA ADS] [CrossRef] [Google Scholar]
  3. Bin-Jie H, Kai-Ning EY, Jun Z, Serge T, Scattering characteristics of conducting cylinder coated with nonuniform magnetized ferrite. Chin. Phys. (2005) 14, 2305. https://doi.org/10.1088/1009-1963/14/11/027 [NASA ADS] [CrossRef] [Google Scholar]
  4. Sadrara M, Miri M, Scattering of electromagnetic waves by a cluster of charged spherical nanoparticles. JOSA B (2016) 33, 2552–2559. https://doi.org/10.1364/JOSAB.33.002552 [NASA ADS] [CrossRef] [Google Scholar]
  5. Xiang J, He S, Zhang Y, Zhu G, A spectral domain approach for the calculation of the scattering of the stratified uniaxial electric anisotropic media under point source excitation with arbitrary orientation. Int. J. Appl. Electromagn. Mech. (2015) 48, 33–46. https://doi.org/10.3233/JAE-140145 [CrossRef] [Google Scholar]
  6. Hamid A, Cooray F, TE scattering by a perfect electromagnetic conducting semi-elliptic-cylindrical boss on a perfectly conducting plane. Int. J. Appl. Electromagn. Mech. (2012) 38, 1–8. https://doi.org/10.3233/JAE-2011-1401 [CrossRef] [Google Scholar]
  7. Zimmermann E, Dändliker R, Souli N, Krattiger B, Scattering of an off-axis Gaussian beam by a dielectric cylinder compared with a rigorous electromagnetic approach. JOSA A (1995) 12, 398–403. https://doi.org/10.1364/JOSAA.12.000398 [NASA ADS] [CrossRef] [Google Scholar]
  8. Lock JA, Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder. JOSA A (1997) 14, 640–652. https://doi.org/10.1364/JOSAA.14.000640 [NASA ADS] [CrossRef] [Google Scholar]
  9. Tzarouchis D, Sihvola A, Light scattering by a dielectric sphere: perspectives on the Mie resonances. Appl. Sci. (2018) 8, 184. https://doi.org/10.3390/app8020184 [NASA ADS] [CrossRef] [Google Scholar]
  10. Lakhtakia A, Mackay TG, Electromagnetic scattering by homogeneous, isotropic, dielectric–magnetic sphere with topologically insulating surface states. JOSA B (2016) 33, 603–609. https://doi.org/10.1364/JOSAB.33.000603 [NASA ADS] [CrossRef] [Google Scholar]
  11. Yang Z, Gao P, Zhang C, Li X, Ye J, Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells. Sci. Rep. (2016) 6, 30503. https://doi.org/10.1038/srep30503 [NASA ADS] [CrossRef] [Google Scholar]
  12. Spinelli P, Lenzmann F, Weeber A, Polman A, Effect of EVA encapsulation on antireflection properties of Mie nanoscatterers for c-Si solar cells. IEEE J. Photovolt. (2015) 5, 559–564. https://doi.org/10.1109/JPHOTOV.2015.2392948 [CrossRef] [Google Scholar]
  13. Stratton, J.A.: Electromagnetic Theory. McGraw-Hill Comp., New York and London (1941). [Google Scholar]
  14. Yushanov S, Crompton JS, Koppenhoefer KC, Mie Scattering of Electromagnetic Waves (2013) 1–7. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.