Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 15, Number 1, 2019
Highlights of EOSAM 2018
Article Number 12
Number of page(s) 11
DOI https://doi.org/10.1186/s41476-019-0104-5
Published online 18 June 2019
  1. Fuhrmann T., Salbeck J., Functional Molecular Glasses: Building Blocks for Future Optoelectronics. Adv. Photochem. (2002) 27, 83–166. [Google Scholar]
  2. Fuhrmann T., Salbeck J., Organic Materials for Photonic Devices. MRS Bull. (2003) 28, 05354–359. https://doi.org/10.1557/mrs2003.100 [Google Scholar]
  3. Rochon P., Batalla E., Natansohn A., Optically induced surface gratings on azoaromatic polymer films. Appl. Phys. Lett. (1995) 66, 2136–138. https://doi.org/10.1063/1.113541 [NASA ADS] [CrossRef] [Google Scholar]
  4. Kim D. Y., Tripathy S. K., Li L., Kumar J., Laser-induced holographic surface relief gratings on nonlinear optical polymer films. Appl. Phys. Lett. (1995) 66, 101166–1168. https://doi.org/10.1063/1.113845 [NASA ADS] [CrossRef] [Google Scholar]
  5. Yager K. G., Barrett C. J., Nalwa H. S., Light-induced nanostructure formation using azobenzene polymers. Polymeric Nanostructures and their Applications (2006) Los AngelesAmerican Scientific Publishers [Google Scholar]
  6. Zilker S. J., Bieringer T., Haarer D., Stein R. S., Van Egmond J. W., Kostromine S. G., Holographic data storage in amorphous polymers. Adv. Mater. (1998) 10, 11855–859. https://doi.org/10.1002/(SICI)1521-4095(199808)10:11<855::AID-ADMA855>3.0.CO;2-H [NASA ADS] [CrossRef] [Google Scholar]
  7. Perschke A., Fuhrmann T., Molecular azo glasses as grating couplers and resonators for optical devices. Adv. Mater. (2002) 14, 11841–843. https://doi.org/10.1002/1521-4095(20020605)14:11<841::AID-ADMA841>3.0.CO;2-O [NASA ADS] [CrossRef] [Google Scholar]
  8. Fuhrmann T., Tsutsui T., Synthesis and Properties of a Hole-Conducting, Photopatternable Molecular Glass. Chem. Mater. (1999) 11, 82226–2232. https://doi.org/10.1021/cm9901820 [CrossRef] [Google Scholar]
  9. Fuhrmann T., Wendorff J. H., Optical Storage. Int. J. Polym. Mater. (2000) 45, 621–675. https://doi.org/10.1080/00914030008035055 [CrossRef] [Google Scholar]
  10. Gruner P., Arlt M., Fuhrmann-Lieker T., Surface Wrinkling Induced by Photofluidization of Low Molecular Azo Glasses. ChemPhysChem (2013) 14, 2424–430. https://doi.org/10.1002/cphc.201200772 [CrossRef] [Google Scholar]
  11. Fuhrmann T., Samse K., Salbeck J., Perschke A., Franke H., Guided electromagnetic waves in organic light emitting diode structures. Org. Electron. (2003) 4, 4219–226. https://doi.org/10.1016/j.orgel.2003.03.001 [CrossRef] [Google Scholar]
  12. Reinke N., Fuhrmann T., Perschke A., Franke H., Improved outcoupling of light in organic light emitting devices, utilizing a holographic DFB-structure. J. Lumin. (2004) 110, 4413–417. https://doi.org/10.1016/j.jlumin.2004.08.040 [NASA ADS] [CrossRef] [Google Scholar]
  13. Goulet-Hanssens A., Barrett C. J., Photo-control of biological systems with azobenzene polymers. J. Polym. Sci. Part A: Polym. Chem. (2013) 51, 143058–3070. https://doi.org/10.1002/pola.26735 [NASA ADS] [CrossRef] [Google Scholar]
  14. Barillé R., Janik R., Kucharski S., Eyer J., Letournel F., Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: An in vitro study for neuron guidance. Colloids Surf. B: Biointerfaces (2011) 88, 63–71. https://doi.org/10.1016/j.colsurfb.2011.06.005 [CrossRef] [Google Scholar]
  15. Blair H. S., Pague H. I., Riordan J. E., Photoresponsive effects in azo polymers. Polymer (1980) 21, 101195–1198. https://doi.org/10.1016/0032-3861(80)90087-7 [Google Scholar]
  16. Hubert C., Malcor E., Maurin I., Nunzi J. M., Raimond P., Fiorini C., Microstructuring of polymers using a light-controlled molecular migration processes. Appl. Surf. Sci (2002) 186, 29–33. https://doi.org/10.1016/S0169-4332(01)00658-4 [NASA ADS] [CrossRef] [Google Scholar]
  17. Hubert C., Fiorini-Debuisschert C., Maurin I., Nunzi J. M., Raimond P., Spontaneous patterning of hexagonal structures in an AZO-polymer using light-controlled mass transport. Adv. Mater. (2002) 14, 10729. https://doi.org/10.1002/1521-4095(20020517)14:10<729::AID-ADMA729>3.0.CO;2-1 [NASA ADS] [CrossRef] [Google Scholar]
  18. Hubert C., Fiorini-Debuisschert C., Rocha L., Raimond P., Nunzi J. -M., Spontaneous photoinduced patterning of azo-dye polymer films: the facts. J. Opt. Soc. Am. B (2007) 24, 81839. https://doi.org/10.1364/JOSAB.24.001839 [NASA ADS] [CrossRef] [Google Scholar]
  19. Kim M. J., Shin B. G., Kim J. J., Kim D. Y., Photoinduced Supramolecular Chirality in Amorphous Azobenzene Polymer Films. J. Am. Chem. Soc. (2002) 124, 143504–3505. https://doi.org/10.1021/ja017454w [CrossRef] [Google Scholar]
  20. Kim M. J., Yoo S. J., Kim D. Y., A Supramolecular Chiroptical Switch Using an Amorphous Azobenzene Polymer. Adv. Funct. Mater. (2006) 16, 162089–2094. https://doi.org/10.1002/adfm.200600130 [CrossRef] [Google Scholar]
  21. Mazaheri L., Lebel O., Nunzi J. -M., Transfer of chirality from light to a Disperse Red 1 molecular glass surface. Opt. Lett. (2017) 42, 234845–4848. https://doi.org/10.1364/OL.42.004845 [CrossRef] [Google Scholar]
  22. Mazaheri L., Rao Bobbara S., Lebel O., Nunzi J. -M., Photoinduction of spontaneous surface relief gratings on Azo DR1 glass. Opt. Lett (2016) 41, 132958–2961. https://doi.org/10.1364/OL.41.002958 [NASA ADS] [CrossRef] [Google Scholar]
  23. Gooch C. H., Tarry H. A., Optical characteristics of twisted nematic liquid-crystal films. Electron. Lett. (1974) 10, 12–4. https://doi.org/10.1049/el:19740002 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.