Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 14, Number 1, 2018
Article Number 28
Number of page(s) 10
DOI https://doi.org/10.1186/s41476-018-0096-6
Published online 22 December 2018
  1. Alfalou A, Brosseau C, Optical image compression and encryption methods. Adv. Opt. Photon. (2009) 1, 3589–636. https://doi.org/10.1364/aop.1.000589 [NASA ADS] [CrossRef] [Google Scholar]
  2. Millán MS, Advanced optical correlation and digital methods for pattern matching—50th anniversary of Vander Lugt matched filter. J. Opt. (2012) 14, 10103001–103020. https://doi.org/10.1088/2040-8978/14/10/103001 [CrossRef] [Google Scholar]
  3. Chen W, Javidi B, Chen X, Advances in optical security systems. Adv. Opt. Photon. (2014) 6, 2120–155. https://doi.org/10.1364/aop.6.000120 [NASA ADS] [CrossRef] [Google Scholar]
  4. Liu S, Guo C, Sheridan JT, A review of optical image encryption techniques. Opt. Laser Technol. (2014) 57, 327–342. https://doi.org/10.1016/j.optlastec.2013.05.023 [NASA ADS] [CrossRef] [Google Scholar]
  5. Javidi B, Carnicer A, Yamaguchi M, Nomura T, Pérez-Cabré E, Millán MS, Nishchal NK, Torroba R, Barrera JF, He W, Peng X, Stern A, Rivenson Y, Alfalou A, Brosseau C, Guo C, Sheridan JT, Situ G, Naruse M, Matsumoto T, Juvells I, Tajahuerce E, Lancis J, Chen W, Chen X, Pinkse PWH, Mosk AP, Markman A, Roadmap on optical security. J. Opt. (2016) 18, 8083001–083039. https://doi.org/10.1088/2040-8978/18/8/083001 [NASA ADS] [CrossRef] [Google Scholar]
  6. Vaish A, Kumar M, Color image encryption using singular value decomposition in discrete cosine Stockwell transform domain. Opt. Appl. (2018) 48, 125–38. https://doi.org/10.5277/oa180103. [Google Scholar]
  7. Xu H, Xu W, Wang S, Wu S, Phase-only asymmetric optical cryptosystem based on random modulus decomposition. J. Mod. Opt. (2018) 65, 101245–1252. https://doi.org/10.1080/09500340.2018.1431314 [NASA ADS] [CrossRef] [Google Scholar]
  8. Ravi K, Basanta B, Naveen KN, Nonlinear QR code based optical image encryption using spiral phase transform, equal modulus decomposition and singular value decomposition. J. Opt. (2018) 20, 1015701–015710. https://doi.org/10.1088/2040-8986/aa9943 [NASA ADS] [CrossRef] [Google Scholar]
  9. Zhao H, Zhong Z, Fang W, Xie H, Zhang Y, Shan M, Double-image encryption using chaotic maps and nonlinear non-DC joint fractional Fourier transform correlator. Opt. Eng. (2016) 55, 90931091–0931097. https://doi.org/10.1117/1.oe.55.9.093109. [NASA ADS] [Google Scholar]
  10. Vaish A, Kumar M, Color image encryption using MSVD, DWT and Arnold transform in fractional Fourier domain. Optik (2017) 145, 273–283. https://doi.org/10.1016/j.ijleo.2017.07.041 [NASA ADS] [CrossRef] [Google Scholar]
  11. Jaramillo A, Barrera JF, Zea AV, Torroba R, Fractional optical cryptographic protocol for data containers in a noise-free multiuser environment. Opt. Lasers Eng. (2018) 102, 119–125. https://doi.org/10.1016/j.optlaseng.2017.10.008 [NASA ADS] [CrossRef] [Google Scholar]
  12. Liu Z, Zhang Y, Liu W, Meng F, Wu Q, Liu S, Optical color image hiding scheme based on chaotic mapping and Hartley transform. Opt. Lasers Eng. (2013) 51, 8967–972. https://doi.org/10.1016/j.optlaseng.2013.02.015 [NASA ADS] [CrossRef] [Google Scholar]
  13. Singh P, Yadav AK, Singh K, Phase image encryption in the fractional Hartley domain using Arnold transform and singular value decomposition. Opt. Lasers Eng. (2017) 91, 187–195. https://doi.org/10.1016/j.optlaseng.2016.11.022 [NASA ADS] [CrossRef] [Google Scholar]
  14. Wang, J., Song, L., Liang, X., Liu, Y., Liu, P.: Secure and noise-free nonlinear optical cryptosystem based on phase-truncated Fresnel diffraction and QR code. Opt. Quant. Electron. 48(11), (2016). https://doi.org/10.1007/s11082-016-0796-3 [Google Scholar]
  15. Shen X, Dou S, Lei M, Chen Y, Optical image encryption based on a joint Fresnel transform correlator with double optical wedges. Appl. Opt. (2016) 55, 308513–8522. https://doi.org/10.1364/AO.55.008513 [NASA ADS] [CrossRef] [Google Scholar]
  16. Zhang C, He W, Wu J, Peng X, Optical cryptosystem based on phase-truncated Fresnel diffraction and transport of intensity equation. Opt. Express (2015) 23, 78845–8854. https://doi.org/10.1364/oe.23.008845 [CrossRef] [Google Scholar]
  17. Li X, Meng X, Yang X, Wang Y, Yin Y, Peng X, He W, Dong G, Chen H, Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme. Opt. Lasers Eng. (2018) 102, 106–111. https://doi.org/10.1016/j.optlaseng.2017.10.023 [NASA ADS] [CrossRef] [Google Scholar]
  18. Liu Q, Wang Y, Wang J, Wang Q-H, Optical image encryption using chaos-based compressed sensing and phase-shifting interference in fractional wavelet domain. Opt. Rev. (2017) 25, 146–55. https://doi.org/10.1007/s10043-017-0390-3 [Google Scholar]
  19. Rodrigo JA, Alieva T, Calvo ML, Gyrator transform: properties and applications. Opt. Express (2007) 15, 52190–2203. https://doi.org/10.1364/oe.15.002190 [NASA ADS] [CrossRef] [Google Scholar]
  20. Rodrigo JA, Alieva T, Calvo ML, Applications of gyrator transform for image processing. Opt. Commun. (2007) 278, 2279–284. https://doi.org/10.1016/j.optcom.2007.06.023 [NASA ADS] [CrossRef] [Google Scholar]
  21. Abuturab MR, Color image security system using double random-structured phase encoding in gyrator transform domain. Appl. Opt. (2012) 51, 153006–3016. https://doi.org/10.1364/AO.51.003006 [NASA ADS] [CrossRef] [Google Scholar]
  22. Abuturab MR, Color information cryptosystem based on optical superposition principle and phase-truncated gyrator transform. Appl. Opt. (2012) 51, 337994–8002. https://doi.org/10.1364/AO.51.007994 [NASA ADS] [CrossRef] [Google Scholar]
  23. Abuturab MR, Color information security system using discrete cosine transform in gyrator transform domain radial-Hilbert phase encoding. Opt. Lasers Eng. (2012) 50, 91209–1216. https://doi.org/10.1016/j.optlaseng.2012.03.020 [NASA ADS] [CrossRef] [Google Scholar]
  24. Abuturab MR, Color information security system using Arnold transform and double structured phase encoding in gyrator transform domain. Opt. Laser Technol. (2013) 45, 525–532. https://doi.org/10.1016/j.optlastec.2012.05.037 [NASA ADS] [CrossRef] [Google Scholar]
  25. Abuturab MR, Color image security system based on discrete Hartley transform in gyrator transform domain. Opt. Lasers Eng. (2013) 51, 3317–324. https://doi.org/10.1016/j.optlaseng.2012.09.008Abuturab, M.R.: Multiple color-image authentication system using HSI color space and QR decomposition in gyrator domains. J. Mod. Opt. 63(11), 1035–1050 (2015). doi:10.1080/09500340.2015.1117671 [NASA ADS] [CrossRef] [Google Scholar]
  26. Liu Z, Zhang Y, Li S, Liu W, Liu W, Wang Y, Liu S, Double image encryption scheme by using random phase encoding and pixel exchanging in the gyrator transform domains. Opt. Laser Technol. (2013) 47, 152–158. https://doi.org/10.1016/j.optlastec.2012.09.007 [NASA ADS] [CrossRef] [Google Scholar]
  27. Liansheng S, Bei Z, Xiaojuan N, Ailing T, Optical multiple-image encryption based on the chaotic structured phase masks under the illumination of a vortex beam in the gyrator domain. Opt. Express (2016) 24, 1499–515. https://doi.org/10.1364/OE.24.000499 [Google Scholar]
  28. Shao Z, Shang Y, Fu X, Yuan H, Shu H, Double-image cryptosystem using chaotic map and mixture amplitude-phase retrieval in gyrator domain. Multimed. Tools Appl. (2017) 77, 11285–1298. https://doi.org/10.1007/s11042-016-4279-0 [Google Scholar]
  29. Chen H, Tanougast C, Liu Z, Blondel W, Hao B, Optical hyperspectral image encryption based on improved Chirikov mapping and gyrator transform. Opt. Lasers Eng. (2018) 107, 62–70. https://doi.org/10.1016/j.optlaseng.2018.03.011 [NASA ADS] [CrossRef] [Google Scholar]
  30. Shao, Z., Shang, Y., Tong, Q., Ding, H., Zhao, X., Fu, X.: Multiple color image encryption and authentication based on phase retrieval and partial decryption in quaternion gyrator domain. Multimed. Tools Appl. (2018). https://doi.org/10.1007/s11042-018-5818-7 [Google Scholar]
  31. Yadav AK, Vashisth S, Singh H, Singh K, A phase-image watermarking scheme in gyrator domain using devil's vortex Fresnel lens as a phase mask. Opt. Commun. (2015) 344, 172–180. https://doi.org/10.1016/j.optcom.2015.01.019 [NASA ADS] [CrossRef] [Google Scholar]
  32. Tebaldi M, Furlan WD, Torroba R, Bolognini N, Optical-data storage-readout technique based on fractal encrypting masks. Opt. Lett. (2009) 34, 3316–318. https://doi.org/10.1364/ol.34.000316 [NASA ADS] [CrossRef] [Google Scholar]
  33. Zamrani W, Ahouzi E, Lizana A, Campos J, Yzuel MJ, Optical image encryption technique based on deterministic phase masks. Opt. Eng. (2016) 55, 101031081–1031089. https://doi.org/10.1117/1.oe.55.10.103108. [CrossRef] [Google Scholar]
  34. Barrera JF, Henao R, Torroba R, Optical encryption method using toroidal zone plates. Opt. Commun. (2005) 248, 1–335–40. https://doi.org/10.1016/j.optcom.2004.11.086 [NASA ADS] [CrossRef] [Google Scholar]
  35. Barrera JF, Henao R, Torroba R, Fault tolerances using toroidal zone plate encryption. Opt. Commun. (2005) 256, 4–6489–494. https://doi.org/10.1016/j.optcom.2005.06.077 [NASA ADS] [CrossRef] [Google Scholar]
  36. Rajput SK, Nishchal NK, Asymmetric color cryptosystem using polarization selective diffractive optical element and structured phase mask. Appl. Opt. (2012) 51, 225377–5386. https://doi.org/10.1364/AO.51.005377 [NASA ADS] [CrossRef] [Google Scholar]
  37. Singh H, Yadav AK, Vashisth S, Singh K, Double phase-image encryption using gyrator transforms, and structured phase mask in the frequency plane. Opt. Lasers Eng. (2015) 67, 145–156. https://doi.org/10.1016/j.optlaseng.2014.10.011 [Google Scholar]
  38. Lin C, Shen X, Design of reconfigurable and structured spiral phase mask for optical security system. Opt. Commun. (2016) 370, 127–134. https://doi.org/10.1016/j.optcom.2016.03.021 [NASA ADS] [CrossRef] [Google Scholar]
  39. Lin C, Shen X, Lei M, Generation of plaintext-independent private key based on conditional decomposition strategy. Opt. Lasers Eng. (2016) 86, 303–308. https://doi.org/10.1016/j.optlaseng.2016.06.023 [NASA ADS] [CrossRef] [Google Scholar]
  40. Singh H, Nonlinear optical double image encryption using random-optical vortex in fractional Hartley transform domain. Opt. Appl. (2017) 47, 4557–578. https://doi.org/10.5277/oa170406. [Google Scholar]
  41. Kumar R, Bhaduri B, Optical image encryption in Fresnel domain using spiral phase transform. J. Opt. (2017) 19, 9095701–095710. https://doi.org/10.1088/2040-8986/aa7cb1 [NASA ADS] [CrossRef] [Google Scholar]
  42. Abuturab MR, Securing multiple information using chaotic spiral phase encoding with simultaneous interference and superposition methods. Opt. Lasers Eng. (2017) 98, 1–16. https://doi.org/10.1016/j.optlaseng.2017.05.001 [NASA ADS] [CrossRef] [Google Scholar]
  43. Chen Q, Shen X, Dou S, Lin C, Wang L, Topological charge number multiplexing for JTC multiple-image encryption. Opt. Commun. (2018) 412, 155–160. https://doi.org/10.1016/j.optcom.2017.12.015 [NASA ADS] [CrossRef] [Google Scholar]
  44. Rafiq Abuturab M, Asymmetric multiple information cryptosystem based on chaotic spiral phase mask and random spectrum decomposition. Opt. Laser Technol. (2018) 98, 298–308. https://doi.org/10.1016/j.optlastec.2017.08.010 [CrossRef] [Google Scholar]
  45. Papoulis A, Pillai SU, Probability, Random Variables, and Stochastic Processes (2002) 4EuropeMcGraw-Hill [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.