Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 14, Number 1, 2018
Article Number 2
Number of page(s) 13
DOI https://doi.org/10.1186/s41476-017-0070-8
Published online 08 January 2018
  1. Geng J, Structured-light 3d surface imaging: a tutorial. Adv. Opt. Photon. (2011) 3, 2128–160. https://doi.org/10.1364/AOP.3.000128 [NASA ADS] [CrossRef] [Google Scholar]
  2. Takeda M, Mutoh K, Fourier transform profilometry for the automatic measurement of 3-d object shapes. Appl. Opt. (1983) 22, 243977–3982. https://doi.org/10.1364/AO.22.003977 [NASA ADS] [CrossRef] [Google Scholar]
  3. Boyer KL, Kak AC, Color-encoded structured light for rapid active ranging. IEEE Trans. Pattern Anal. Mach. Intell. (1987) PAMI-9, 114–28. https://doi.org/10.1109/TPAMI.1987.4767869 [CrossRef] [Google Scholar]
  4. Maruyama M, Abe S, Range sensing by projecting multiple slits with random cuts. IEEE Trans. Pattern Anal. Mach. Intell. (1993) 15, 6647–651. https://doi.org/10.1109/34.216735 [CrossRef] [Google Scholar]
  5. Hugli H, Maitre G, Generation and use of color pseudo random sequences for coding structured light in active ranging. 1988 International Congress on Optical Science and Engineering (1989) WashingtonInternational Society for Optics and Photonics [Google Scholar]
  6. Le Moigne J, Waxman AM, Multi-resolution grid patterns for building range maps. Applied Machine Vision Conference (1985) DearbornSociety of Manufacturing Engineers [Google Scholar]
  7. Sagawa R, Ota Y, Yagi Y, Furukawa R, Asada N, Kawasaki H, Dense 3d reconstruction method using a single pattern for fast moving object. 2009 IEEE International Conference on Computer Vision (2009) WashingtonIEEE [Google Scholar]
  8. Griffin PM, Narasimhan LS, Yee SR, Generation of uniquely encoded light patterns for range data acquisition. Pattern Recogn. (1992) 25, 6609–616. https://doi.org/10.1016/0031-3203(92)90078-W [NASA ADS] [CrossRef] [Google Scholar]
  9. Posdamer J, Altschuler M, Surface measurement by space-encoded projected beam systems. Comput. Graph. Image Process. (1982) 18, 11–17. https://doi.org/10.1016/0146-664X(82)90096-X [CrossRef] [Google Scholar]
  10. Inokuchi S, Sato K, Matsuda F, Range imaging system for 3-d object recognition. Proceedings of the International Conference on Pattern Recognition, vol. 48 (1984) Silver SpringIEEE [Google Scholar]
  11. Caspi D, Kiryati N, Shamir J, Range imaging with adaptive color structured light. IEEE Trans. Pattern Anal. Mach. Intell. (1998) 20, 5470–480. https://doi.org/10.1109/34.682177 [CrossRef] [Google Scholar]
  12. Srinivasan V, Liu H-C, Halioua M, Automated phase-measuring profilometry of 3-d diffuse objects. Appl. Opt. (1984) 23, 183105–3108. https://doi.org/10.1364/AO.23.003105 [NASA ADS] [CrossRef] [Google Scholar]
  13. Xiong Z, Zhang Y, Wu F, Zeng W, Computational depth sensing: Toward high-performance commodity depth cameras. IEEE Signal Proc. Mag. (2017) 34, 355–68. https://doi.org/10.1109/MSP.2017.2669347 [NASA ADS] [CrossRef] [Google Scholar]
  14. Gorthi SS, Rastogi P, Fringe projection techniques: whither we are?. Opt. Lasers Eng. (2010) 48, IMAC-REVIEW-2009-001133–140. https://doi.org/10.1016/j.optlaseng.2009.09.001 [NASA ADS] [CrossRef] [Google Scholar]
  15. Creath K, Phase-shifting speckle interferometry. 29th Annual Technical Symposium (1985) WashingtonInternational Society for Optics and Photonics [Google Scholar]
  16. Zheng S, Chen W, Su X, Adaptive windowed fourier transform in 3-d shape measurement. Opt. Eng. (2006) 45, 6063601–063601. https://doi.org/10.1117/1.2213986 [NASA ADS] [CrossRef] [Google Scholar]
  17. Zhong J, Weng J, Phase retrieval of optical fringe patterns from the ridge of a wavelet transform. Opt. Lett. (2005) 30, 192560–2562. https://doi.org/10.1364/OL.30.002560 [NASA ADS] [CrossRef] [Google Scholar]
  18. Zhong J, Weng J, Dilating gabor transform for the fringe analysis of 3-d shape measurement. Opt. Eng. (2004) 43, 4895–899. https://doi.org/10.1117/1.1666870 [NASA ADS] [CrossRef] [Google Scholar]
  19. Zhang S, Li X, Yau S-T, Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction. Appl. Opt. (2007) 46, 150–57. https://doi.org/10.1364/AO.46.000050 [NASA ADS] [CrossRef] [Google Scholar]
  20. Gutmann B, Weber H, Phase unwrapping with the branch-cut method: role of phase-field direction. Appl. Opt. (2000) 39, 264802–4816. https://doi.org/10.1364/AO.39.004802 [NASA ADS] [CrossRef] [Google Scholar]
  21. Baldi A, Phase unwrapping by region growing. Appl. Opt. (2003) 42, 142498–2505. https://doi.org/10.1364/AO.42.002498 [NASA ADS] [CrossRef] [Google Scholar]
  22. Chen CW, Zebker HA, Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms. JOSA A (2000) 17, 3401–414. https://doi.org/10.1364/JOSAA.17.000401 [NASA ADS] [CrossRef] [Google Scholar]
  23. Zheng D, Da F, Phase coding method for absolute phase retrieval with a large number of codewords. Opt. Express (2012) 20, 2224139–24150. https://doi.org/10.1364/OE.20.024139 [CrossRef] [Google Scholar]
  24. Wang Y, Zhang S, Novel phase-coding method for absolute phase retrieval. Opt. Lett. (2012) 37, 112067–2069. https://doi.org/10.1364/OL.37.002067 [NASA ADS] [CrossRef] [Google Scholar]
  25. Zhang S, Composite phase-shifting algorithm for absolute phase measurement. Optics Lasers Eng. (2012) 50, 111538–1541. https://doi.org/10.1016/j.optlaseng.2012.06.005 [NASA ADS] [CrossRef] [Google Scholar]
  26. Wang Y, Liu K, Hao Q, Lau DL, Hassebrook LG, Period coded phase shifting strategy for real–time 3-d structured light illumination. IEEE Trans. Image Process. (2011) 20, 113001–3013. https://doi.org/10.1109/TIP.2011.2155072 [NASA ADS] [CrossRef] [Google Scholar]
  27. Zhang Y, Xiong Z, Wu F, Unambiguous 3d measurement from speckle-embedded fringe. Appl. Opt. (2013) 52, 327797–7805. https://doi.org/10.1364/AO.52.007797 [NASA ADS] [CrossRef] [Google Scholar]
  28. Zhang Y, Xiong Z, Yang Z, Wu F, Real-time scalable depth sensing with hybrid structured light illumination. IEEE Trans. Image Process. (2014) 23, 197–109. https://doi.org/10.1109/TIP.2013.2286901 [NASA ADS] [CrossRef] [Google Scholar]
  29. Shi G, Yang L, Li F, Niu Y, Li R, Gao Z, Xie X, Square wave encoded fringe patterns for high accuracy depth sensing. Appl. Opt. (2015) 54, 123796–3804. https://doi.org/10.1364/AO.54.003796 [NASA ADS] [CrossRef] [Google Scholar]
  30. Budianto B, Lun DP-K, Hsung T-C, Marker encoded fringe projection profilometry for efficient 3d model acquisition. Appl. Opt. (2014) 53, 317442–7453. https://doi.org/10.1364/AO.53.007442 [NASA ADS] [CrossRef] [Google Scholar]
  31. Cong P, Xiong Z, Zhang Y, Zhao S, Wu F, Accurate dynamic 3d sensing with fourier-assisted phase shifting. IEEE J. Sel. Top. Signal Process. (2015) 9, 3396–408. https://doi.org/10.1109/JSTSP.2014.2378217 [NASA ADS] [CrossRef] [Google Scholar]
  32. Salvi J, Pages J, Batlle J, Pattern codification strategies in structured light systems. Pattern Recogn. (2004) 37, 4827–849. https://doi.org/10.1016/j.patcog.2003.10.002 [NASA ADS] [CrossRef] [Google Scholar]
  33. Sagawa R, Kawasaki H, Kiyota S, Furukawa R, Dense one-shot 3d reconstruction by detecting continuous regions with parallel line projection. 2011 IEEE International Conference on Computer Vision (2011) WashingtonIEEE [Google Scholar]
  34. Ghiglia DC, Pritt MD, Two-dimensional phase unwrapping: theory, algorithms and software, vol. 4 (1998) New YorkWiley [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.