Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 13, Number 1, 2017
Article Number 20
Number of page(s) 5
DOI https://doi.org/10.1186/s41476-017-0049-5
Published online 22 August 2017
  1. Deepa H, et al.Solvatochromic shift studies in LD-425 and LD-423: Estimation of ground and excited state dipole moments. J. Mol. Liq. (2013) 181, 82–88. https://doi.org/10.1016/j.molliq.2013.02.016 [CrossRef] [Google Scholar]
  2. Masilamani V, Sivaram B, Spectral and laser gain characteristics of solvated species of scopoletin. J. Lumin. (1981) 22, 2211–220. https://doi.org/10.1016/0022-2313(81)90010-7 [NASA ADS] [CrossRef] [Google Scholar]
  3. Porter G, Suppan P, Primary photochemical processes in aromatic molecules. Part 12.—Excited states of benzophenone derivatives. Trans. Faraday Soc. (1965) 61, 1664–1673. https://doi.org/10.1039/TF9656101664 [CrossRef] [Google Scholar]
  4. Olivares SP, Risso S, Gutierrez MI, Solvent effects on the spectroscopic properties of 4-hexylresorcinol. Spectrochim. Acta A Mol. Biomol. Spectrosc. (2008) 71, 2336–339. https://doi.org/10.1016/j.saa.2007.12.037 [NASA ADS] [CrossRef] [Google Scholar]
  5. Ibnaouf K, et al.Amplified spontaneous emission spectra from the superexciplex of coumarin 138. Spectrochim. Acta A Mol. Biomol. Spectrosc. (2012) 97, 1145–1151. https://doi.org/10.1016/j.saa.2012.07.131 [NASA ADS] [CrossRef] [Google Scholar]
  6. Zhang D, et al.Low threshold amplified spontaneous emission based on coumarin 151 encapsulated in mesoporous SBA-15. Appl. Phys. Lett. (2006) 89, 23231112. https://doi.org/10.1063/1.2402908 [NASA ADS] [CrossRef] [Google Scholar]
  7. Sastikumar, D. and V. Masilamani. Influence of solvents on amplified spontaneous emission characteristics of 7-diethylamino-4-methylcoumarin. in Proceedings of the Indian Academy of Sciences-Chemical Sciences. Springer, India (1997) [Google Scholar]
  8. Somasundaram G, Ramalingam A, Gain studies of Coumarin 1 dye-doped polymer laser. J. Lumin. (2000) 90, 11–5. https://doi.org/10.1016/S0022-2313(99)00608-0 [NASA ADS] [CrossRef] [Google Scholar]
  9. Ibnaouf K, et al.Dual ASE Spectra from" Superexciplex" TICT States of Dye Molecules. Laser Phys Lawrence (2005) 15, 111536. [Google Scholar]
  10. Ibnaouf K, Effects of the solvent environments on the ASE from coumarin 503. Optik-Int J Light Electron Opt (2015) 126, 245057–5060. https://doi.org/10.1016/j.ijleo.2015.08.183 [NASA ADS] [CrossRef] [Google Scholar]
  11. Guli M, et al.Encapsulation of Coumarin 151 into the mesopores of modified rodlike SBA-15. Mater. Res. Bull. (2010) 45, 11–5. https://doi.org/10.1016/j.materresbull.2009.09.013 [CrossRef] [Google Scholar]
  12. Ferrer M, et al.Proton-transfer lasers from solid polymeric chains with covalently bound 2-(2′-hydroxyphenyl) benzimidazole groups. Appl. Opt. (1994) 33, 122266–2272. https://doi.org/10.1364/AO.33.002266 [NASA ADS] [CrossRef] [Google Scholar]
  13. Canva M, et al.Perylene-and pyrromethene-doped xerogel for a pulsed laser. Appl. Opt. (1995) 34, 3428–431. https://doi.org/10.1364/AO.34.000428 [NASA ADS] [CrossRef] [Google Scholar]
  14. Exciton, LD-473 Available from: http://www.exciton.com/pdfs/ld473.pdf [Google Scholar]
  15. Ibnaouf K, Laser from external energy transfer of MEH–PPV conjugated polymer. Opt. Laser Technol. (2012) 44, 3710–713. https://doi.org/10.1016/j.optlastec.2011.08.029 [NASA ADS] [CrossRef] [Google Scholar]
  16. Idriss H, et al.Amplified spontaneous emission from the exciplex state of a conjugated polymer “PFO” in oleic acid. Opt. Laser Technol. (2016) 83, 148–152. https://doi.org/10.1016/j.optlastec.2016.04.006 [NASA ADS] [CrossRef] [Google Scholar]
  17. Mahaney M, Huber JR, Fluorescence from the second excited singlet of aromatic thioketones in solution. Chem. Phys. (1975) 9, 3371–378. https://doi.org/10.1016/0301-0104(75)80075-9 [NASA ADS] [CrossRef] [Google Scholar]
  18. Moulton PF, Spectroscopic and laser characteristics of Ti: Al 2 O 3. JOSA B (1986) 3, 1125–133. https://doi.org/10.1364/JOSAB.3.000125 [NASA ADS] [CrossRef] [Google Scholar]
  19. Bondarev S, et al.Fluorescence and electronic structure of the laser dye DCM in solutions and in polymethylmethacrylate. J. Appl. Spectrosc. (2004) 71, 2194–201. https://doi.org/10.1023/B:JAPS.0000032874.60100.a0 [CrossRef] [Google Scholar]
  20. Yao YS, et al.Starburst DCM-Type Red-Light-Emitting Materials for Electroluminescence Applications. Adv. Funct. Mater. (2006) 16, 5709–718. https://doi.org/10.1002/adfm.200500558 [CrossRef] [Google Scholar]
  21. Costela A, et al.Solid-state dye laser based on Coumarin 540A-doped polymeric matrices. Opt. Commun. (1996) 130, 144–50. https://doi.org/10.1016/0030-4018(96)00220-9 [NASA ADS] [CrossRef] [Google Scholar]
  22. Singh S, et al.Solid-state polymeric dye lasers. J. Lumin. (2003) 101, 4285–291. https://doi.org/10.1016/S0022-2313(02)00571-9 [NASA ADS] [CrossRef] [Google Scholar]
  23. del Valle JC, Kasha M, Catalán J, Spectroscopy of Amplified Spontaneous Emission Laser Spikes in Phenyloxazoles. Prototype Classes. J. Phys. Chem. A (1997) 101, 183260–3272. https://doi.org/10.1021/jp9633299 [Google Scholar]
  24. Al-Shamiri, H.A.S., Y. Badr, and M.T.A. Kana. Optical, Photo-physical properties and photostability of laser dyes impregnated in Sol-Gel matrix. in Electronics, Communications and Photonics Conference (SIECPC), 2011 Saudi International. IEEE, Saudi (2011) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.