Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 12, Number 1, 2016
Article Number 5
Number of page(s) 21
DOI https://doi.org/10.1186/s41476-016-0003-y
Published online 23 June 2016
  1. Eckmann J-P, Kamphorst SO, Ruelle D, Recurrence Plots of Dynamical Systems. Europhys. Lett. (1987) 4, 973–977. https://doi.org/10.1209/0295-5075/4/9/004 [NASA ADS] [CrossRef] [Google Scholar]
  2. F. Takens, “Detecting strange attractors in turbulence” in Lecture Notes in Mathematics, David Rand, and Lai-Sang Young, ed., 366–381 (Springer, Warwick, 1981). doi://10-1007-BFb0091924. [Google Scholar]
  3. J. P. Zbilut and C. L. Webber, “Embeddings and delays as derived from quantification of recurrence plots” Physics Letters A 171, 199–203 (1992). doi://10.1016/0375-9601(92)90426-M. [Google Scholar]
  4. Webber CL, Zbilut JP, Dynamical assessment of physiological systems and states using recurrence plot strategies”. J. Appl. Physiol. (1994) 76, 965–973. [CrossRef] [Google Scholar]
  5. N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, and J. Kurths “Recurrence-plot-based measures of complexity and their application to heart-rate-variability data” Physical Review E 66, 026702 (2002). doi://10.1103/PhysRevE.66.026702. [Google Scholar]
  6. Schulz J, Barz K, Ayon P, Lüdtke A, Zielinski O, Mengedoht D, Hirche H-J, Imaging of plankton specimens with the Lightframe On-sight Keyspecies Investigation (LOKI) system”. J. Eur. Opt. Soc. Rapid Publ (2010) 5, 10017s. https://doi.org/10.2971/jeos.2010.10017s [CrossRef] [Google Scholar]
  7. MacLeod N, Benfield MC, Culverhouse PF, Time to automate identification. Nature (2010) 467, 154–155. https://doi.org/10.1038/467154a [NASA ADS] [CrossRef] [Google Scholar]
  8. Persoon E, Fu KS, Shape discrimination using Fourier descriptors. IEEE Trans. Syst. Man Cybern. (1977) 7, 170–179. https://doi.org/10.1109/TSMC.1977.4309681 [CrossRef] [Google Scholar]
  9. Mokhtarian F, Silhouette-Based Isolated Object Recognition through Curvature Scale Space. IEEE Trans. Pattern Anal. Mach. Intell. (1995) 17, 539–544. https://doi.org/10.1109/34.391387 [CrossRef] [Google Scholar]
  10. D.G. Lowe “Object recognition from local scale-invariant features” Proceedings of the International Conference on Computer Vision 2, 11501157 (1999). doi://10.1109/ICCV.1999.790410. [Google Scholar]
  11. Bay H, Tuytelaars T, Van Gool L, Leonardis A, Bischof H, Axel P, SURF – Speeded Up Robust Features. Computer Vision – ECCV 2006 (2006) Berlin HeidelbergSpringer Verlag404–417. https://doi.org/10.1007/11744023_32 [CrossRef] [Google Scholar]
  12. Hu Q, “Application of statistical learning theory to plankton image analysis” PhD Thesis Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Supervisors: Cabell S. Davis and Hanumant Singh (2006) https://doi.org/10.1575/1912/1237 [Google Scholar]
  13. J. Schulz, K. Barz, P. Ayon, and H.-J. Hirche “A sample data set of plankton and particles for automated image classification systems sampled off the Peruvian coast” Pangaea Data Publisher System for Earth & Environmental Science, Registration in progress. [Google Scholar]
  14. H.-J. Hirche, K. Barz, P. Ayón, and J. Schulz “High resolution vertical distribution of the copepod Calanus chilensis in relation to the shallow oxygen minimum zone off northern Peru using LOKI, a new plankton imaging system” Deep Sea Research Part I 88, 63–73 (2014). doi://10.1016/j.dsr.2014.03.00. [Google Scholar]
  15. Patton DR, A Diversity Index for Quantifying Habitat Edge. Wildl. Soc. Bull. (1975) 3, 171–173. [Google Scholar]
  16. Hu MK, Visual Pattern Recognition by Moment Invariants. IRE Trans. Inf. Theory (1962) IT-8, 179–187. [Google Scholar]
  17. Gonzalez RC, Woods RE, Eddins SL, “Script: invmoments” Digital Image Processing Using MATLAB, Revision: 1.5, Date: 2003/11/21 14:39:19, Prentice-Hall (2004) [Google Scholar]
  18. Marwan, N. “Cross Recurrence Plot Toolbox for Matlab, Reference Manual. Version 5.17, Release 28.16” http://tocsy.pikpotsdam.de/CRPtoolbox/. [Google Scholar]
  19. J. Gao, and H. Cai, “On the structures and quantification of recurrence plots”. Physical. Letters, A 270, 75–87, doi://10.1016/S0375-9601(00)00304-2 [Google Scholar]
  20. Webber CL, Marwan N, Recurrence Quantification Analysis (Springer International Publishing (2015) [CrossRef] [Google Scholar]
  21. Fisher RA, The utilization of multiple measurements in taxonomic problems. Ann. Eugenics (1936) 7, 179–188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x [CrossRef] [Google Scholar]
  22. Jennrich RI, Enslein K, Ralston A, Wilf HS, Stepwise regression. Statistical Methods for Digital Computers (1977) New YorkWiley [Google Scholar]
  23. Jennrich RI, Enslein K, Ralston A, Wilf HS, Stepwise discriminant analysis”. Statistical Methods for Digital Computers (1977) New YorkWiley [Google Scholar]
  24. Marwan N, How to avoid potential pitfalls in recurrence plot based data analysis. Int. J. Bifurcation Chaos (2011) 21, 1003–1017. https://doi.org/10.1142/S0218127411029008 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.