Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 12, Number 1, 2016
Article Number 19
Number of page(s) 12
DOI https://doi.org/10.1186/s41476-016-0021-9
Published online 25 October 2016
  1. Ries H, Leike I, Muschaweck J, Optimized additive mixing of colored light-emitting diode sources. Opt. Eng. (2004) 43, 1531–1536. https://doi.org/10.1117/1.1753273 [NASA ADS] [CrossRef] [Google Scholar]
  2. Li Y-L, Shah JM, Leung P-H, Gessmann T, Schubert EF, Performance characteristics of white light sources consisting of multiple light emitting diodes. Proc. SPIE (2004) 5187, 178–184. https://doi.org/10.1117/12.512529 [Google Scholar]
  3. Shang, P. Y., Tang, C. W., Huang, B. J.: Charaterizing LEDs for mixture of colored LED light sources, in 2006 Int. Conf. Electron. Mater. Packag. EMAP 2006, (IEEE, Kowloon, 2006) [Google Scholar]
  4. Lu SSLW, Zhang T, He SM, Zhang B, Li N, Light-emitting diodes for space applications. Opt. Quant. Electron. (2009) 41, 883–893. https://doi.org/10.1007/s11082-010-9402-2 [CrossRef] [Google Scholar]
  5. Finlayson G, Mackiewicz M, Hurlbert A, Pearce B, Crichton S, On calculating metamer sets for spectrally tunable LED illuminators. J. Opt. Soc. Am. A Opt. Image Sci. Vis. (2014) 31, 1577–1587. https://doi.org/10.1364/JOSAA.31.001577 [NASA ADS] [CrossRef] [Google Scholar]
  6. Hirvonen JM, Poikonen T, Vaskuri A, Kärhä P, Ikonen E, Spectrally adjustable quasi-monochromatic radiance source based on LEDs and its application for measuring spectral responsivity of a luminance meter. Meas. Sci. Technol. (2013) 24, 115201–115208. https://doi.org/10.1088/0957-0233/24/11/115201 [NASA ADS] [CrossRef] [Google Scholar]
  7. Mackiewicz, M., Crichton, S., Newsome, S., Gazerro, R., Finlayson, G. D., Hurlbert, A.: Spectrally tunable led illuminator for vision research, in Conf. Colour Graph. Imaging, Vision, CGIV 2012, (Society for Imaging Science and Technology, Amsterdam, 2012) [Google Scholar]
  8. Kolberg D, Schubert F, Lontke N, Zwigart A, Spinner DM, Development of tunable close match LED solar simulator with extended spectral range to UV and IR. Energy Procedia (2011) 8, 100–105. https://doi.org/10.1016/j.egypro.2011.06.109 [CrossRef] [Google Scholar]
  9. Kasalica BV, Belca ID, Stojadinovic SDJ, Zekovic LJD, Nikolic D, Light-emitting-diode-based light source for calibration of an intensified charge-coupled device detection system intended for galvanoluminescence measurements. Appl. Spectrosc. (2006) 60, 1090–1094. https://doi.org/10.1366/000370206778397254 [NASA ADS] [CrossRef] [Google Scholar]
  10. O’Hagan WJ, McKenna M, Sherrington DC, Rolinski OJ, Birch DJS, MHz LED source for nanosecond fluorescence sensing. Meas. Sci. Technol. (2002) 13, 84–91. https://doi.org/10.1088/0957-0233/13/1/311 [CrossRef] [Google Scholar]
  11. Fryc I, Brown SW, Ohno Y, A spectrally tunable LED sphere source enables accurate calibration of tristimulus colorimeters. Proc. SPIE (2004) 6158, 61580E. [Google Scholar]
  12. Brown SW, Santana C, Eppeldauer GP, Development of a tunable LED-based colorimetric source. J. Res. Natl. Inst. Stand. Technol. (2002) 107, 363–371. https://doi.org/10.6028/jres.107.029 [CrossRef] [Google Scholar]
  13. Fryc I, Brown SW, Eppeldauer GP, Ohno Y, LED-based spectrally tunable source for radiometric, photometric, and colorimetric applications. Opt. Eng. (2005) 44, 111308–111309. https://doi.org/10.1117/1.2130317 [NASA ADS] [CrossRef] [Google Scholar]
  14. Burgos, F. J., Perales, E., Herrera-Ramírez, J. A., Vilaseca, M., Martínez-Verdú, F. M., Pujol, J.: Reconstruction of CIE standard illuminants with an LED-based spectrally tuneable light source, in 12th Int. AIC Congr. AIC 2013, (2013) [Google Scholar]
  15. Fryc I, Brown SW, Ohno Y, Spectral matching with an LED-based spectrally tunable light source. Proc. SPIE (2005) 5941, 59411I300–308. [Google Scholar]
  16. Brown SW, Rice JP, Neira JE, Johnson BC, Jackson JD, Spectrally tunable sources for advanced radiometric applications. J. Res. Natl. Inst. Stand. Technol. (2006) 111, 401–410. https://doi.org/10.6028/jres.111.030 [CrossRef] [Google Scholar]
  17. Yuan SJ, Huimin Yan K, LED-based spectrally tunable light source with optimized fitting. Chinese Opt. Lett. (2014) 12, 32301. https://doi.org/10.3788/COL201412.032301 [NASA ADS] [CrossRef] [Google Scholar]
  18. Hsu C-W, Hsu K-F, Hwang J-M, Stepless tunable four-chip LED lighting control on a black body radiation curve using the generalized reduced gradient method. Opt. Quant. Electron. (2016) 48, 1–8. https://doi.org/10.1007/s11082-016-0497-y [CrossRef] [Google Scholar]
  19. Lasertechnik, R.: Roithner Lasertechnik - LEDs. 2014, <http://www.roithner-laser.com/led.html> Accessed 9 Apr 2014 [Google Scholar]
  20. Van Benthem MH, Keenan MR, Fast algorithm for the solution of large-scale non-negativity-constrained least squares problems. J. Chemom. (2004) 18, 441–450. https://doi.org/10.1002/cem.889 [CrossRef] [Google Scholar]
  21. Chalmers A, Soltic S, Light source optimization: spectral design and simulation of four-band white-light sources. Opt. Eng. (2012) 51, 044003–1. https://doi.org/10.1117/1.OE.51.4.044003 [NASA ADS] [CrossRef] [Google Scholar]
  22. Kim, H., Park, H., Eldén, L.: Non-negative tensor factorization based on alternating large-scale non-negativity-constrained least squares, in Proc. 7th IEEE Int. Conf. Bioinforma. Bioeng. (BIBE, Boston, 2007) [Google Scholar]
  23. Bro R, Jong S, A fast non-negativity-constrained least squares algorithm. J. Chemom. (1997) 11, 393–401. https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L [CrossRef] [Google Scholar]
  24. Rokhlin V, Tygert M, A fast randomized algorithm for overdetermined linear least-squares regression. Proc. Natl. Acad. Sci. (2008) 105, 13212–13217. https://doi.org/10.1073/pnas.0804869105 [Google Scholar]
  25. Lampe J, Voss H, Large-scale Tikhonov regularization of total least squares. J. Comput. Appl. Math. (2013) 238, 95–108. https://doi.org/10.1016/j.cam.2012.08.023 [CrossRef] [Google Scholar]
  26. Golub GH, Hansen PC, O’Leary DP, Tikhonov regularization and total least squares. Siam J. Matrix Anal. Appl. (1999) 21, 185–194. https://doi.org/10.1137/S0895479897326432 [CrossRef] [Google Scholar]
  27. Wei Y, Zhang N, Ng MK, Xu W, Tikhonov regularization for weighted total least squares problems. Appl. Math. Lett. (2007) 20, 82–87. https://doi.org/10.1016/j.aml.2006.03.004 [CrossRef] [Google Scholar]
  28. Beck A, Ben-Tal A, On the solution of the Tikhonov regularization of the total least squares problem. SIAM J. Optim. (2006) 17, 98–118. https://doi.org/10.1137/050624418 [CrossRef] [Google Scholar]
  29. Nash JC, The (Dantzig) simplex method for linear programming. Comput. Sci. Eng. (2000) 2, 29–31. https://doi.org/10.1109/5992.814654 [NASA ADS] [CrossRef] [Google Scholar]
  30. Forrest JJ, Goldfarb D, Steepest-edge simplex algorithms for linear programming. Math. Program. (1992) 57, 341–374. https://doi.org/10.1007/BF01581089 [CrossRef] [Google Scholar]
  31. Planck M, The theory of heat radiation. Search (1914) 30, 85–94. [Google Scholar]
  32. Chandrasekhar, S.: Radiative Transfer, in Energy (Dover Publication Inc, New York, 1960) [Google Scholar]
  33. Photonics H.: Characteristics and use of infrared detectors, Small, 43 (2004) [Google Scholar]
  34. Bellotti E, D’Orsogna D, Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors. IEEE J. Quantum Electron. (2006) 42, 418–426. https://doi.org/10.1109/JQE.2006.871555 [NASA ADS] [CrossRef] [Google Scholar]
  35. Rogalski A, Infrared detectors: an overview. Infrared Phys. Technol. (2002) 43, 187–210. https://doi.org/10.1016/S1350-4495(02)00140-8 [NASA ADS] [CrossRef] [Google Scholar]
  36. OSI Optoelectronics: Two Color Sandwich Detectors. Silicon Photodiodes, 2015, <http://www.osioptoelectronics.com/standard-products/silicon-photodiodes/two-color-sandwich-detectors.aspx> Accessed 2 Apr 2016. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.