Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 12, Number 1, 2016
Article Number 17
Number of page(s) 6
DOI https://doi.org/10.1186/s41476-016-0019-3
Published online 11 October 2016
  1. Rajshekhar G, Rastogi P, Fringe analysis: premise and perspectives. Optics & Lasers in Engineering (2012) 50, 8iii–x. https://doi.org/10.1016/j.optlaseng.2012.04.006 [NASA ADS] [CrossRef] [Google Scholar]
  2. Winston AW, Baer CA, Allen LR, A simple film thickness gauge utilizing Newton’s rings. Vacuum (1959) 9, 5302. [Google Scholar]
  3. Wahl KJ, Chromik RR, Lee GY, Quantitative in situ measurement of transfer film thickness by a Newton’s rings method. Wear (2008) 264, 7731–736. https://doi.org/10.1016/j.wear.2007.04.009 [CrossRef] [Google Scholar]
  4. Gentle CR, Halsall M, Measurement of Poisson’s ratio using Newton’s rings. Opt. Lasers Eng. (1982) 3, 2111–118. https://doi.org/10.1016/0143-8166(82)90004-5 [NASA ADS] [CrossRef] [Google Scholar]
  5. Abdelsalam DG, Shaalan MS, Eloker MM, Kim D, Radius of curvature measurement of spherical smooth surfaces by multiple-beam interferometry in reflection. Opt. Lasers Eng. (2010) 48, 6643–649. https://doi.org/10.1016/j.optlaseng.2010.02.007 [NASA ADS] [CrossRef] [Google Scholar]
  6. Yua XL, Yao Y, Shi WJ, Sun YX, Chen DY, Study on an automatic processing technique of the circle interference fringe for fine interferometry. Optik (2010) 121, 9826–830. https://doi.org/10.1016/j.ijleo.2008.09.029 [NASA ADS] [CrossRef] [Google Scholar]
  7. Cai LZ, Liu Q, Yang XL, A simple method of contrast enhancement and extremum extraction for interference fringes. Optics & Laser Technology (2003) 35, 4295–302. https://doi.org/10.1016/S0030-3992(03)00022-7 [NASA ADS] [CrossRef] [Google Scholar]
  8. Dobroiu A, Alexandrescu A, Apostol D, Nascov V, Damian V, Centering and profiling algorithm for processing Newton’s rings fringe patterns. Opt. Eng. (2000) 39, 123201–3206. https://doi.org/10.1117/1.1327836 [NASA ADS] [CrossRef] [Google Scholar]
  9. Nascov V, Apostol D, Garoi F, Statistical processing of Newton’s rings using discrete Fourier analysis. Opt. Eng. (2007) 46, 228201. https://doi.org/10.1117/1.2709856 [Google Scholar]
  10. Kaufmann GH, Galizzi GE, Evaluation of a method to determine interferometric phase derivatives. Opt. Lasers Eng. (1997) 27, 5451–465. https://doi.org/10.1016/S0143-8166(96)00051-6 [NASA ADS] [CrossRef] [Google Scholar]
  11. Nascov V, Dobroiu A, Apostol D, Damian V, Statistical errors on Newton fringe pattern digital processing. Proc. SPIE (2004) 5581, 788–796. https://doi.org/10.1117/12.583080 [Google Scholar]
  12. Sokkara TZN, Dessoukya HME, Shams-Eldinb MA, El-Morsy MA, Automatic fringe analysis of two-beam interference patterns for measurement of refractive index and birefringence profiles of fibres. Opt. Lasers Eng. (2007) 45, 3431–441. https://doi.org/10.1016/j.optlaseng.2006.09.003 [NASA ADS] [CrossRef] [Google Scholar]
  13. Okada K, Yokoyama E, Miike H, Interference fringe pattern analysis using inverse cosine function. Electronics & Communications in Japan (2007) 90, 161–73. [CrossRef] [Google Scholar]
  14. Dias PA, Dunkel T, Fajado DAS, Gallegos EL, Denecke M, Wiedemann P, Schneider FK, Suhr H, Image processing for identification and quantification of filamentous bacteria in in situ acquired images. BioMedical Engineering OnLine (2016) 15, 64. https://doi.org/10.1186/s12938-016-0197-7 [CrossRef] [Google Scholar]
  15. Xia ML, Wang L, Lan ZX, Chen HZ, High-throughput screening of high Monascus pigment-producing strain based on digital image processing. J. Ind. Microbiol. Biotechnol. (2016) 43, 4451–461. https://doi.org/10.1007/s10295-015-1729-z [CrossRef] [Google Scholar]
  16. Li YH, Chen XJ, Liu WJ, Yu ZH, Center positioning of circular interference fringe patterns for fine measurement. Optik (2014) 125, 122796–2799. https://doi.org/10.1016/j.ijleo.2013.11.044 [NASA ADS] [CrossRef] [Google Scholar]
  17. Hermann E, Bleicken S, Subburaj Y, García-Sáez AJ, Automated analysis of giant unilamellar vesicles using circular Hough transformation. Oxford Journals (2014) 30, 121747–1754. [Google Scholar]
  18. Turker M, Koc-San D, Building extraction from high-resolution optical spaceborne images using the integration of support vector machine (SVM) classification, Hough transformation and perceptual grouping. Int. J. Appl. Earth Obs. Geoinf. (2015) 34, 58–69. https://doi.org/10.1016/j.jag.2014.06.016 [NASA ADS] [Google Scholar]
  19. Lalitha NV, Srinivasa Rao CH, Jaya Sree PVY, An efficient audio watermarking based on SVD and Cartesian-Polar transformation with synchronization. Lecture Notes in Electrical Engineering (2015) 372, 365–375. https://doi.org/10.1007/978-81-322-2728-1_32 [CrossRef] [Google Scholar]
  20. Zhou SB, Shen AQ, Li GF, Concrete image segmentation based on multiscale mathematic morphology operators and Otsu method. Advances in Materials Science & Engineering (2015) 2015, 1–11. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.