Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 11, 2016
|
|
---|---|---|
Article Number | 16006i | |
Number of page(s) | 20 | |
DOI | https://doi.org/10.2971/jeos.2016.16006i | |
Published online | 06 February 2016 |
- K. Zeng, and T. King-Ning, “Six cases of reliability study of Pb-free solder joints in electronic packaging technology,” Mat. Sci. Eng. Rep. 38, 55–105 (2002). [CrossRef] [Google Scholar]
- C. W. Mak, N. V. Afzulpurkar, M. N. Dailey, and P. B. Saram, “A Bayesian approach to automated optical inspection for solder jet ball joint defects in the head gimbal assembly process,” IEEE T. Autom. Sci. Eng. 11, 1155–1162 (2014). [CrossRef] [Google Scholar]
- M. Koscielski, and J. Sitek, “Influence of the fluxes properties on quality and the microstructure of lead-free solder joints executed by selective soldering,” Solder. Surf. Mt. Tech. 26, 2–7 (2014). [CrossRef] [Google Scholar]
- Y. Wang, M. Wang, and Z. Zhang, “Microfocus X-ray printed circuit board inspection system,” Optik 125 4929–4931 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- M. S. Laghari, and Q. A. Memon, “Identification of faulty BGA solder joints in X-ray images,” Int. J. Fut. Comp. Commun. 4, 122–125 (2015). [Google Scholar]
- J. C. E. Mertens, J. J. Williams, and N. Chawla, “Development of a lab-scale, high-resolution, tube-generated X-ray computedtomography system for three-dimensional (3D) materials characterization,” Mater. Charact. 92, 36–48 (2014). [CrossRef] [Google Scholar]
- M. Rauer, A. Volkert, T. Schreck, S. Härter, and M. Kaloudis, “Computed-tomography-based analysis of voids in SnBi57Ag1 solder joints and their influence on the reliability,” J. Fail. Anal. Prevent. 14, 272–281 (2014). [CrossRef] [Google Scholar]
- S. Bord, A. Clement, J. C. Lecomte, and J. C. Marmeggi, “Investigation of IC samples using X-ray computer tomography,” J. Phys. IV 118, 413–417 (2004). [NASA ADS] [Google Scholar]
- L. Su, Z. Zha, X. Lu, T. Shi, and G. Liao, “Using BP network forultrasonic inspection of flip chip solder joints,” Mech. Syst. Signal Pr. 34, 183–190 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- F. Dugal, and M. Ciappa, “Study of thermal cycling and temperature aging on PbSnAg die attach solder joints for high power modules,” Microelectroni. Reliab. 54, 1856–1861 (2014). [CrossRef] [Google Scholar]
- B. R. Livesay, Electronic Materials Handbook Vol 1: Packaging, (ASM International, Metals Park, 1994). [Google Scholar]
- X. Lu, T. Shi, J. Han, G. Liao, L. Su, and S. Wang, “Defects inspection of the solder bumps using self reference technology in active thermography,” Infrared Phys. Techn. 63, 97–102 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- A. Ciucci, V. Palleschi, S. Rastelli, R. Barbini, F. Colao, R. Fantoni, A. Palucci, S. Ribezzo, and H. J. L. Van der Steen, “Trace pollutants analysis in soil by a time-resolved laser-induced breakdown spectroscopy technique,” Appl. Phys. B 63, 185–190 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- E. H. Piepmeier, Laser ablation for atomic spectroscopy (John Wiley & Sons, New York, 1986). [Google Scholar]
- G. C. Dacey, “Optical masers in science and technology,” Science 135, 71–74 (1962). [NASA ADS] [CrossRef] [Google Scholar]
- F. Brech, and L. Cross, “Optical micro-emission stimulated by a ruby MASER,” Appl. Spectrosc. 16, 59 (1962). [CrossRef] [Google Scholar]
- E. F. Runge, R. W. Minck, and F. R. Bryan, “Spectrochemical analysis using a pulsed laser source,” Spectrochim. Acta 20, 733–736 (1964). [NASA ADS] [CrossRef] [Google Scholar]
- L. Radziemski, and D. Cremers, “A brief history of laser-induced breakdown spectroscopy: from the concept of atoms to LIBS 2012,” Spectrochim. Acta B 87, 3–10 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- C. Aragon, and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta B 63, 893–916 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Brazil. Chem. Soc. 18, 463–512 (2007). [CrossRef] [Google Scholar]
- D. W. Hahn, and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasmaparticle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64, 335A–366A (2010). [NASA ADS] [CrossRef] [Google Scholar]
- D. W. Hahn, and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66, 100A–119A (2012). [NASA ADS] [Google Scholar]
- F. Anabitarte, A. Cobo, and J. M. Lopez-Higuera, “Laser-induced breakdown spectroscopy: fundamentals, applications, and challenges,” ISRN Spectrosc. 2012, 1–12 (2012). [CrossRef] [Google Scholar]
- J. El Haddad, L. Canioni, and B. Bousquet, “Good practices in LIBS analysis: review and advices,” Spectrochim. Acta B. 101, 171–182 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- D. A. Cremers, and L. J. Radziemski (eds.), Handbook of laserinduced breakdown spectroscopy (John Wiley & Sons, Chichester, 2013). [CrossRef] [Google Scholar]
- S. Musazzi, and U. Perini (eds.), Laser-induced breakdown spectroscopy: theory and applications (Springer, New York, 2014). [Google Scholar]
- J. P. Singh, and S. N. Thakur, Laser-induced breakdown spectroscopy (Elsevier, Amsterdam, 2007). [Google Scholar]
- D. A. Cremers, F. Y. Yueh, J. P. Singh, and H. Zhang, Laser-induced breakdown spectroscopy, Elemental analysis, Encyclopedia of Analytical Chemistry, 9780470027318.a0708.pub2 (2012). [Google Scholar]
- A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-induced breakdown spectroscopy (Cambridge University Press, Cambridge, 2006). [CrossRef] [Google Scholar]
- C. M. Bishop, Pattern recognition and machine learning (Springer, New York, 2007). [Google Scholar]
- D. Barber, Bayesian reasoning and machine learning (Cambridge University Press, New York, 2012). [CrossRef] [Google Scholar]
- V. K. Unnikrishnan, K. S. Choudhari, S. D. Kulkarni, R. Nayak, V. B. Kartha, C. Santhosh, and B. M. Suri, “Biomedical and environmental applications of laser-induced breakdown spectroscopy,” Pramana 82, 397–401 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- M. Á. Aguirre, M. Hidalgo, A. Canals, J. A. Nóbrega, and E. R. Pereira-Filho, “Analysis of waste electrical and electronic equipment (WEEE) using laser-induced breakdown spectroscopy (LIBS) and multivariate analysis,” Talanta 117, 419–424 (2013). [CrossRef] [Google Scholar]
- H. Xia, and M. C. M. Bakker, “Reliable classification of moving waste materials with LIBS in concrete recycling,” Talanta 120, 239–247 (2014). [CrossRef] [Google Scholar]
- J. L. Gottfried, R. S. Harmon, F. C. D. L. Jr., and A. W. Miziolek, “Multivariate analysis of laser-induced breakdown spectroscopy chemical signatures for geomaterial classification,” Spectrochim. Acta B 64, 1009–1019 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- G. Kim, J. Kwak, K. R. Kim, H. Lee, K. W. Kim, H. Yang, and K. Park, “Rapid detection of soils contaminated with heavy metals and oils by laser-induced breakdown spectroscopy (LIBS),” J. Hazard. Mater. 263, 754–760 (2013). [CrossRef] [Google Scholar]
- X. Zhu, T. Xu, Q. Lin, L. Liang, G. Niu, H. Lai, M. Xu, et al., “Advanced statistical analysis of laser-induced breakdown spectroscopy data to discriminate sedimentary rocks based on Czerny–Turner and Echelle spectrometers,” Spectrochimica Acta B 93, 8–13 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, et al., “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochimica Acta B 82, 1–27 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Shunchun, L. Jindong, D. Meirong, C. Kai, L. Junyan, and L. Jun, “Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis,” Appl. Spectrosc. 65, 1197–1201 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- M. M. Tripathi, K. K. Srinivasan, S. R. Krishnan, F. Y. Yueh, and J. P. Singh, A comparison of multivariate LIBS and chemiluminescence-based local equivalence ratio measurements in premixed atmospheric methane.air flames, Fuel 106, 318–326 (2013). [CrossRef] [Google Scholar]
- J. El Haddad, D. Bruyere, A. Ismael, G. Gallou, V. Laperche, K. Michel, L. Canioni, et al., Application of a series of artificial neural networks to on-site quantitative analysis of lead into real soil samples by laser-induced breakdown spectroscopy, Spectrochim. Acta B 97, 57–64 (2014). [NASA ADS] [Google Scholar]
- P. M. Mukhono, K. H. Angeyo, A. Dehayem-Kamadjeu, and K. A. Kaduki, Laser-induced breakdown spectroscopy and characterization of environmental matrices utilizing multivariate chemometrics, Spectrochim. Acta B 87, 81–85 (2013). [NASA ADS] [Google Scholar]
- G. S. Senesi, Laser-induced Breakdown Spectroscopy (LIBS) applied to terrestrial and extraterrestrial analogue geomaterials with emphasis to minerals and rocks Earth-Sci. Rev. 139, 231–267 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- M. Sinmaz, B. G. Oztoprak, E. Akman, M. Gunes, E. Kacar, F. Tulek, and A. Demir, “Classification of archeologic ceramics analysed by Laser-induced Breakdown Spectroscopy (LIBS),” Balk. Phys. Lett. 22, 24–35 (2014). [Google Scholar]
- A. Ramil, A. J. López, and A. Yáñez, “Application of artificial neural networks for the rapid classification of archaeological ceramics by means of laser-induced breakdown spectroscopy (LIBS),” Appl. Phys. A 92, 197–202 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- G. Vítková, L. Prokeš, K. Novotnỳ, P. Pořízka, J. Novotnỳ, D. Všianskỳ, L. Čelko, et al., “Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off and table-top laser-induced breakdown spectroscopy, Spectrochim. Acta B 101, 191–199 (2014). [CrossRef] [Google Scholar]
- R. Kanawade, F. Mehari, C. Knipfer, M. Rohde, K. Tangermann-Gerk, M. Schmidt, and F. Stelzle, “Pilot study of laser-induced breakdown spectroscopy for tissue differentiation by monitoring the plume created during laser surgery. An approach on a feedback Laser control mechanism,” Spectrochim. Acta B 87, 175–181 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- S. Moncayo, S. Manzoor, F. Navarro-Villoslada, and J. O. Caceres, gEvaluation of supervised chemometric methods for sample classification by laser-induced breakdown spectroscopy, Chemometr. Intell. Lab. 146, 354–364 (2015). [CrossRef] [Google Scholar]
- Q. Godoi, F. O. Leme, L. C. Trevizan, E. R. Pereira Filho, I. A. Rufini, D. Santos, and F. J. Krug, “Laser-induced breakdown spectroscopy and chemometrics for classification of toys relying on toxic elements, Spectrochim. Acta B 66, 138–143 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- J. Cisewski, E. Snyder, J. Hannig, and L. Oudejans, “Support vector machine classification of suspect powders using laser-induced breakdown spectroscopy (LIBS) spectral data,” J. Chemometr. 26, 143–149 (2012). [CrossRef] [Google Scholar]
- L. Liang, T. Zhang, K. Wang, H. Tang, X. Yang, X. Zhu, Y. Duan, et al., gClassification of steel materials by laser-induced breakdown spectroscopy coupled with support vector machines, Appl. Opt. 53, 544–552 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- M. Grzegorzek, D. Schwerbel, D. Balthasar, and D. Paulus, “Automatic sorting of alluminium alloys based on spectroscopy measures,” in OAGM/AAPR Workshop 2011 (Graz, Austria, 2011). [Google Scholar]
- T. Canel, P. Demir, E. Kacar, B. G. Oztoprak, E. Akman, M. Gunes, and A. Demir, “Optimization of parameters for depth resolution of galvanized steel by LIBS technique,” Opt. Laser Technol. 54, 257–264 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- A. M. El Sherbini, and A. A. S. Al Aamer, “Development of a simple software program used for evaluation of plasma electron density in LIBS experiments via spectral line shape analysis,” J. Signal Inf. Process. 3, 502–515 (2012). [Google Scholar]
- I. T. Jolliffe, Principal component analysis (second edition, Springer, New York, 2002). [Google Scholar]
- J. D. Hybl, G. A. Lithgow, and S. G. Buckley, “Laser-induced breakdown spectroscopy detection and classification of biological aerosols,” Appl. Spectrosc. 57, 1207–1215 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- G. H. Golub, and C. F. V. Loan, Matrix computations (The Johns Hopkins University Press, Baltimore, London, 1996). [Google Scholar]
- S. Dray, “On the number of principal components: a test of dimensionality based on measurements of similarity between matrices,” Comput. Stat. Data An. 52, 2228–2237 (2008). [CrossRef] [Google Scholar]
- J. Josse, and F. Husson, “Selecting the number of components in principal component analysis using cross-validation approximations”, Comput. Stat. Data An. 56, 1869–1879 (2012). [CrossRef] [Google Scholar]
- M. O. Ulfarsson, and V. Solo, Selecting the number of principal components with SURE, IEEE Signal Proc. Lett. 22, 239–243 (2015). [NASA ADS] [CrossRef] [Google Scholar]
- H. Wold, Estimation of principal components and related models by iterative least squares, in Multivariate Analysis, P. Krishnaiaah, ed., 391–420 (Academic Press, New York, 1966). [Google Scholar]
- J.-B. Sirven, B. Bousquet, L. Canioni, and L. Sarger, Laser-induced breakdown spectroscopy of composite samples: comparison of advanced chemometrics methods, Anal. Chem. 78, 1462–1469 (2006). [CrossRef] [Google Scholar]
- F.-Y. Yueh, H. Zheng, J. P. Singh, and S. Burgess, Preliminary evaluation of laser-induced breakdown spectroscopy for tissue classification, Spectrochim. Acta B 64, 1059–1067 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- J. M. Andrade, G. Cristoforetti, S. Legnaioli, G. Lorenzetti, V. Palleschi, and A. A. Shaltout, Classical univariate calibration and partial least squares for quantitative analysis of brass samples by laser-induced breakdown spectroscopy, Spectrochim. Acta B 65, 658–663 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- S. Yao, J. Lu, J. Li, K. Chen, J. Li, and M. Dong, Multi-elemental analysis of fertilizer using laser-induced breakdown spectroscopy coupled with partial least squares regression, J. Anal. Atom. Spectrom. 25, 1733–1738 (2010). [CrossRef] [Google Scholar]
- R. A. Putnam, Q. I. Mohaidat, A. Daabous, and S. J. Rehse, A comparison of multivariate analysis techniques and variable selection strategies in a laser-induced breakdown spectroscopy bacterial classification, Spectrochim. Acta B 87, 161–167 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- B. Yunfeng, Z. Ying, Y. Jingwen, W. Zhongchen, and L. Ying, Classification and discrimination of minerals using laser induced breakdown spectroscopy and Raman spectroscopy, Plasma Sci. Technol. 17, 923 (2015). [NASA ADS] [CrossRef] [Google Scholar]
- S. de Jong, SIMPLS: an alternative approach to partial least squares regression, Chemometr. Intell. Lab. 18, 251–263 (1993). [CrossRef] [Google Scholar]
- S. Wold, Pattern recognition by means of disjoint principal components models, Pattern Recogn. 8, 127–139 (1976). [NASA ADS] [CrossRef] [Google Scholar]
- S. Wold, and M. Sjostrom, SIMCA: a method for analyzing chemical data in terms of similarity and analogy, in Chemometrics: theory and application, B. R. Kowalski, ed., 243–281 (American Chemical Society, Washington, D. C., 1977). [CrossRef] [Google Scholar]
- S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques, Spectrochim. Acta B 64, 79–88 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- D. F. Specht, “Probabilistic neural networks,” Neural Networks 3, 109–118 (1990). [CrossRef] [Google Scholar]
- V. Motto-Ros, A. Koujelev, G. Osinski, and A. Dudelzak, “Quantitative multi-elemental laser-induced breakdown spectroscopy using artificial neural networks,” J. Eur. Opt. Soc.-Rapid 3, 08011 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- J. O. Caceres, S. Moncayo, J. D. Rosales, F. J. M. de Villena, F. C. Alvira, and G. M. Bilmes, “Application of laser-induced breakdown spectroscopy (LIBS) and neural networks to olive oils analysis,” Appl. Spectrosc. 67, 1064–1072 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- D. Pokrajac, A. Lazarevic, V. Kecman, A. Marcano, Y. Markushin, T. Vance, N. Reljin, et al., “Automatic classification of laser-induced breakdown spectroscopy (LIBS) data of protein biomarker solutions,” Appl. Spectrosc. 68, 1067–1075 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- T. Zhang, S. Wu, J. Dong, J. Wei, K. Wang, H. Tang, X. Yang, et al., “Quantitative and classification analysis of slag samples by laser induced breakdown spectroscopy (LIBS) coupled with support vector machine (SVM) and partial least square (PLS) methods,” J. Anal. Atom. Spectrom. 30, 368–374 (2015). [CrossRef] [Google Scholar]
- L. Sheng, T. Zhang, G. Niu, K. Wang, H. Tang, Y. Duan, and H. Li, “Classification of iron ores by laser-induced breakdown spectroscopy (LIBS) combined with random forest (RF),” J. Anal. Atom. Spectrom. 30, 453–458 (2015). [CrossRef] [Google Scholar]
- C. Cortes, and V. Vapnik, “Support-vector networks,” Machine Learning 20, 273–297 (1995). [Google Scholar]
- A. Cichocki, R. Zdunek, A. H. Phan, and S.-I. Amari, Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation (John Wiley & Sons, Chichester, 2009). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.