Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
Article Number 15039
Number of page(s) 5
DOI https://doi.org/10.2971/jeos.2015.15039
Published online 16 August 2015
  1. A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiberoptic biosensors,” Sensor Actuat. B-Chem. 125, 688–703 (2007). [CrossRef] [Google Scholar]
  2. M. Mehrvar, C. Bis, J. M. Scharer, M. M. Young, and J. H. Luong, “Fiber-optic biosensors-trends and advances,” Anal. Sci. 16, 677–692 (2000). [CrossRef] [Google Scholar]
  3. M. Marazuela, and M. Moreno-Bondi, “Fiber-optic biosensors - an overview,” Anal. Bioanal Chem. 372, 664–682 (2002). [CrossRef] [Google Scholar]
  4. T. K. Yadav, R. Narayanaswamy, M. H. Abu Bakar, Y. M. Kamil, and M. A. Mahdi, “Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing,” Opt. Express 22, 22802–22807 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  5. M. Born, and E. Wolf, Principles of optics (Great Britain: Pergamon Press, Oxford, 1970). [Google Scholar]
  6. A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98, 221109 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  7. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  8. P. A. S. Jorge, S. O. Silva, C. Gouveia, P. Tafulo, L. Coelho, P. Caldas, D. Viegas, et al., “Fiber optic-based refractive index sensing at INESC Porto,” Sensors 12, 8371–8389 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  9. A. Lim, W. B. Ji, and S. C. Tjin, “Improved refractive index sensitivity utilizing long-period gratings with periodic corrugations on cladding,” J. Sensor 2012, 48347 (2012). [Google Scholar]
  10. R. Yang, Y.-S. Yu, Y. Xue, C. Chen, Q.-D. Chen, and H.-B. Sun, “Single S-tapered fiber Mach-Zehnder interferometers,” Opt. Lett. 36, 4482–4484 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  11. L.-P. Sun, J. Li, Y. Tan, S. Gao, L. Jin, and B.-O. Guan, “Bending effect on modal interference in a fiber taper and sensitivity enhancement for refractive index measurement,” Opt. Express 21, 26714–26720 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  12. L. Xu, Y. Li, and B. Li, “Nonadiabatic fiber taper-based Mach- Zehnder interferometer for refractive index sensing,” Appl. Phys. Lett. 101, 153510 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  13. O. Frazão, P. Caldas, J. L. Santos, P. V. S. Marques, C. Turck, D. J. Lougnot, and O. Soppera, “Fabry-Perot refractometer based on an end-of-fiber polymer tip,” Opt. Lett. 34, 2474–2476 (2009). [CrossRef] [Google Scholar]
  14. O. Frazão, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, “Refractive index tip sensor based on Fabry-Perot cavities formed by a suspended core fibre,” J. Eur. Opt. Soc.- Rapid 4, 09041 (2009). [CrossRef] [Google Scholar]
  15. M. Deng, C.-P. Tang, T. Zhu, Y.-J. Rao, L.-C. Xu, and M. Han, “Refractive index measurement using photonic crystal fiber-based Fabry- Perot interferometer,” Appl. Opt. 49, 1593–1598 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  16. D. Jauregui-Vazquez, J. M. Estudillo-Ayala, R. Rojas-Laguna, E. Vargas-Rodriguez, J. M. Sierra-Hernandez, J. C. Hernandez-Garcia, and R. I. Mata-Chavez, “An all fiber intrinsic Fabry-Perot interferometer based on an air-microcavity,” Sensors 13, 6355–6364 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  17. E. Baude, “Numerical study of tapered fiber optics as evanescent field sensors,” in Proceedings to 2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC), 1-5 (IEEE, Rio de Janeiro, 2013). [Google Scholar]
  18. A. Hartung, F. Wirth, and H. Bartelt, “Light propagation in tapered optical fibers: Spatial light confinement and generation of plasmonic waves,”, in Proceedings to Progress in Electromagnetics Research Symposium, 255-258 (The Electromagnetics Academy, Marrakesh, 2011). [Google Scholar]
  19. L. C. Bobb, P. M. Shankar, and H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” J. Lightwave Technol. 8, 1084–1090 (1990). [NASA ADS] [CrossRef] [Google Scholar]
  20. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66, 216–220 (1976). [NASA ADS] [CrossRef] [Google Scholar]
  21. T. Zhu, D. Wu, M. Liu, and D.-W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors 12, 10430–10449 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  22. P. Chambers, E. A. D. Austin, and J. P. Dakin, “Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy,” Mea. Sci. Technol. 15, 1629 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  23. R. Goody, “Cross-correlating spectrometer,” J. Opt. Soc. Am. B 58, 900–908 (1968). [CrossRef] [Google Scholar]
  24. E. Vargas-Rodriguez, and H. N. Rutt, “Method to minimize spurious background signals in gas detectors based on correlation spectroscopy using a Fabry-Perot bandpass filter shape optimization,” Opt. Eng. 44, 103002 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  25. E. Vargas-Rodríguez, and H. N. Rutt, “An analytical method to find the optimal parameters for gas detectors based on correlation spectroscopy using a Fabry-Perot interferometer,” Appl. Optics 46, 4625–4632 (2007). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.