Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
|
|
---|---|---|
Article Number | 15037 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.2971/jeos.2015.15037 | |
Published online | 12 July 2015 |
- N. Hagen, and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- R. C. Lyon, D. S. Lester, E. N. Lewis, E. Lee, L. X. Yu, E. H. Jefferson, and A. S. Hussain, “Near-infrared spectral imaging for quality assurance of pharmaceutical products: Analysis of tablets to assess powder blend homogeneity,” AAPS PharmSciTech. 3, 1–15 (2002). [CrossRef] [Google Scholar]
- C. Zhang, B. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt. 43, 6090–6094 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Xu, R. Xu, F. Li, and J. Wang, “Verification of programmable, large-FOV spectral imaging technology based on a staring/scanning area-array detector,” Proc. SPIE 9263, 92630I (2014). [NASA ADS] [CrossRef] [Google Scholar]
- Z. Pan, G. Healey, M. Prasad, and B. Tromberg, “Face recognition in hyperspectral images,” IEEE T. Pattern Anal. 25, 1552–1560 (2003). [CrossRef] [Google Scholar]
- H. Chang, A. Koschan, M. Abidi, S. G. Kong, and C.-H. Won, “Multispectral visible and infrared imaging for face recognition,” in Proceedings to the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 1-6 (IEEE, Anchorage, 2008). [Google Scholar]
- P. J. Nystrom, and L. K. Mestha, “Automatically focusing a spectral imaging system onto an object in a scene,” US20140240511 A1 (2014). [Google Scholar]
- C. Feng, X. Zhang, L. Shen, and S. Zhuo, “Multi-spectral imaging system for shadow detection and attenuation,” US20140240477 A1 (2014). [Google Scholar]
- H. Maeng, S. Liao, D. Kang, S.-W. Lee, and A. K. Jain, “Nighttime face recognition at long distance: Cross-distance and crossspectral matching,” in Computer Vision - ACCV 2012, K. M. Lee, Y. Matsushita, J. M. Rehg, and Z. Hu, eds., 708–721 (Springer Berlin Heidelberg, 2013). [Google Scholar]
- J. Antila, R. Mannila, U. Kantojärvi, C. Holmlund, A. Rissanen, I. Näkki, J. Ollila, and H. Saari, “Spectral imaging device based on a tuneable MEMS Fabry-Perot interferometer,” Proc. SPIE 8374, 83740F (2012). [NASA ADS] [CrossRef] [Google Scholar]
- P. Jacquinot, “The luminosity of spectrometers with prisms, gratings, or Fabry-Pérot etalons,” J. Opt. Soc. Am. 44, 761–765 (1954). [NASA ADS] [CrossRef] [Google Scholar]
- J. Praks, A. Kestilä, M. Hallikainen, H. Saari, J. Antila, P. Janhunen, and R. Vainio, “Aalto-1 - An experimental nanosatellite for hyperspectral remote sensing,” in Proceedings to the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 4367-4370 (IEEE, Vancouver, 2011). [Google Scholar]
- H. Saari, I. Pölönen, H. Salo, E. Honkavaara, T. Hakala, C. Holmlund, J. Mäkynen, R. Mannila, T. Antila, and A. Akujärvi, “Miniaturized hyperspectral imager calibration and UAV flight campaigns”, Proc. SPIE 8889, 88891O (2013). [NASA ADS] [CrossRef] [Google Scholar]
- E. Honkavaara, J. Kaivosoja, J. Mäkynen, I. Pellikka, L. Pesonen, H. Saari, H. Salo, T. Hakala, L. Marklelin, and T. Rosnell, “Hyperspectral reflectance signatures and point clouds for precision agriculture by light weight UAV imaging system”, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. I-7, 353–358 (2012). [CrossRef] [Google Scholar]
- T. J. Kentischer, W. Schmidt, M. Sigwarth, and M. v. Uexküll, “TESOS, a double Fabry-Perot instrument for solar spectroscopy,” Astron. Astrophys. 340, 569–578 (1998). [NASA ADS] [Google Scholar]
- E. Hecht, Optics (fourth edition, Addison Wesley, San Francisco, 2002). [Google Scholar]
- J. M. Vaughan, The Fabry-Perot interferometer - History, theory, practice and applications (IOP Publishing Ltd, Bristol, 1989). [Google Scholar]
- W. H. Steel, Interferometry (Cambridge University Press, New York, 1967). [Google Scholar]
- H. A. Macleod, Thin-film optical filters (fourth edition, CRC Press, Boca Raton, 2010). [CrossRef] [Google Scholar]
- O. El Gawhary, M. C. Dheur, S. F. Pereira, and J. J. M. Braat, “Extension of the classical Fabry-Perot formula to 1D multilayered structures,” Appl. Phys. B 111, 637–645 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- I. Livshits, Z. Hou, P. van Grol, Y. Shao, M. van Turnhout, P. Urbach, and F. Bociort, “Using saddle points for challenging optical design tasks,” Proc. SPIE 9192, 919204 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- http://www.rikola.fi/site/?page_id=46 [Google Scholar]
- http://goochandhousego.com/news/ miniature-spectral-imaging-camera/ [Google Scholar]
- B. Schmitt, J. P. Borgogno, G. Albrand, and E. Pelletier, “In situ and air index measurements: influence of the deposition parameters on the shift of TiO2/SiO2 Fabry-Perot filters,” Appl. Opt. 25, 3909–3915 (1986). [NASA ADS] [CrossRef] [Google Scholar]
- D. C. Brown, “Decentering distortion of lenses,” Photogramm. Eng. 32, 444–462 (1966). [Google Scholar]
- M. Aggarwal, H. Hua, and N. Ahuja, “On cosine-fourth and vignetting effects in real lenses,” Proceedings to the Eighth IEEE International Conference on Computer Vision, 472-479 (IEEE, Vancouver, 2001). [Google Scholar]
- CODE V Systems Analysis Reference Manual 10.6 (Synopsys, 2013). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.