Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
|
|
---|---|---|
Article Number | 15035 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.2971/jeos.2015.15035 | |
Published online | 12 July 2015 |
- D. Wei, and M. Aketagawa, “Comparison of length measurements provided by a femtosecond optical frequency comb,” Opt. Express 22, 7040–7045 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29, 1153–1155 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Time-offlight method using multiple pulse train interference as a time recorder,” Opt. Express 19, 4881–4889 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- C. Narin, T. Satoru, T. Kiyoshi, and M. Hirokazu, “A new method for high-accuracy gauge block measurement using 2 GHz repetition mode of a mode-locked fiber laser,” Meas. Sci. Technol. 23, 054003 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- G. Wu, K. Arai, M. Takahashi, H. Inaba, and K. Minoshima, “Highaccuracy correction of air refractive index by using two-color heterodyne interferometry of optical frequency combs,” Meas. Sci. Technol. 24, 015203 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, “Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,” Opt. Express 22, 10380–10397 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Analysis of the temporal coherence function of a femtosecond optical frequency comb,” Opt. Express 17, 7011–7018 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Spatial positioning measurements up to 150m using temporal coherence of optical frequency comb,” Precis. Eng. 37, 635–639 (2013). [Google Scholar]
- W. Sudatham, H. Matsumoto, S. Takahashi, and K. Takamasu, “Verification of the positioning accuracy of industrial coordinate measuring machine using optical-comb pulsed interferometer with a rough metal ball target,” Precis. Eng. 41, 63–67 (2015). [CrossRef] [Google Scholar]
- J. Zhu, P. Cui, Y. Guo, L. Yang, and J. Lin, “Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement,” Opt. Express 23, 13069–13081 (2015). [NASA ADS] [CrossRef] [Google Scholar]
- D. Wei, K. Takamasu, and H. Matsumoto, “Synthetic adjacent pulse repetition interval length method to solve integer ambiguity problem: theoretical analysis,” J. Eur. Opt. Soc.-Rapid 8, 13016 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, “Space position measurement using long-path heterodyne interferometer with optical frequency comb,” Opt. Express 20, 2725–2732 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- K.-N. Joo, Y. Kim, and S.-W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16, 19799–19806 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- B. Petr, M. Pavel, K. Petr, and D. Miroslav, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23, 094001 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- P. L. Bender, and J. C. Owens, “Correction of Optical Distance Measurements for the Fluctuating Atmospheric Index of Refraction,” J. Geophys. Res. 70, 2461–2462 (1965). [NASA ADS] [CrossRef] [Google Scholar]
- G. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using twocolour optical frequency combs,” Sci. Rep. 3, (2013). [Google Scholar]
- D. Wei, and M. Aketagawa, “Comparison of two-color methods based on wavelength and adjacent pulse repetition interval length,” J. Eur. Opt. Soc.-Rapid 9, 14031 (2014). [CrossRef] [Google Scholar]
- D. Wei, M. Aketagawa, K. Takamasu, and H. Matsumoto, “Twocolor absolute length measuring method based on pulse repetition interval lengths,” Opt. Eng. 53, 122413 (2014). [NASA ADS] [CrossRef] [Google Scholar]
- W. H. Knox, N. M. Pearson, K. D. Li, and C. A. Hirlimann, “Interferometric Measurements of Femtosecond Group Delay in Optical- Components,” Opt. Lett. 13, 574–576 (1988). [NASA ADS] [CrossRef] [Google Scholar]
- S. Diddams, and J.-C. Diels, “Dispersion measurements with whitelight interferometry,” J. Opt. Soc. Am. B 13, 1120–1129 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- D. Wei, K. Takamasu, and H. Matsumoto, “A study of the possibility of using an adjacent pulse repetition interval length as a scale using a HeliumâĂŞNeon interferometer,” Precis. Eng. 37, 694–698 (2013). [Google Scholar]
- J. Ye, and S. T. Cundiff, Femtosecond optical frequency comb : principle, operation, and applications (Springer, New York, 2005). [CrossRef] [Google Scholar]
- B. E. A. Saleh, and M. C. Teich, Fundamentals of photonics, Wiley series in pure and applied optics (Wiley-Interscience, Hoboken, 2007). [Google Scholar]
- J. A. Stone, and J. H. Zimmerman, “Refractive index of air calculator,” http://emtoolbox.nist.gov/Wavelength/Edlen.asp. [Google Scholar]
- D. Wei, and M. Aketagawa, “Uncertainty in length conversion due to change of sensitivity coefficients of refractive index,” Opt. Commun. 345, 67–70 (2015). [NASA ADS] [CrossRef] [Google Scholar]
- P. Balling, P. Kren, P. Masika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17, 9300–9313 (2009). [CrossRef] [Google Scholar]
- K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. Soc. Am. A 13, 832–843 (1996). [CrossRef] [Google Scholar]
- M. C. Park, and S. W. Kim, “Direct quadratic polynomial fitting for fringe peak detection of white light scanning interferograms,” Opt. Eng. 39, 952–959 (2000). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.