Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
Article Number 15031
Number of page(s) 7
DOI https://doi.org/10.2971/jeos.2015.15031
Published online 18 March 2015
  1. K. Aydin, V. E. Ferry, R.M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 1–7 (2011). [CrossRef] [Google Scholar]
  2. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, et al., “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23, 5410–5414 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  3. A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, et al., “Controlled-reflectance surfaces with filmcoupled colloidal nanoantennas,” Nature 492, 86–89 (2012). [CrossRef] [Google Scholar]
  4. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  5. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  6. X. Liu, T. Tyler, T. Starr, A. F. Starr, N.M. Jokerst, and W.J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  7. S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106, 0411105 (2015). [CrossRef] [Google Scholar]
  8. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  10. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98-OP120 (2012). [Google Scholar]
  11. M. K. Hedayati, F. Faupel, and M. Elbahri, “Review of plasmonic nano composite metamaterial absorber,” Materials 7, 1221–1248 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  12. Y. Shi, X. Chen, F. Lou, Y. Chen, M. Yan, L. Wosinski, and M. Qiu, “All-optical switching of silicon disk resonator based on photothermal effect in metal-insulator-metal absorber,” Opt. Lett. 39, 4431–4434 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  13. J. A. Schuller, T. Taubner, M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photon. 3, 658–661 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  14. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  15. Z. Ruan, and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105, 013901 (2010). [CrossRef] [Google Scholar]
  16. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011). [Google Scholar]
  17. C. Wu, B. Neuner III, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84, 075102 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  18. R. Walter, A. Tittl, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, “Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography,” Adv. Opt. Mater. 3, 201400545 (2015). [Google Scholar]
  19. M. Yan, J. Dai, and M. Qiu, “Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles,” J. Opt. 16, 025002 (2014). [CrossRef] [Google Scholar]
  20. W. R. Holland, and D. Hall, “Frequency shifts of an electricdipole resonance near a conducting surface,” Phys. Rev. Lett. 52, 1041–1044 (1984). [NASA ADS] [CrossRef] [Google Scholar]
  21. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, “Electromagnetic coupling between a metal nanoparticle grating and a metallic surface,” Opt. Lett. 30, 3404–3406 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  22. G. Lévêque, and O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Opt. Express 14, 9971–9981 (2006). [CrossRef] [Google Scholar]
  23. M. Yan, “Metal-insulator-metal light absorber: a continuous structure,” J. Opt. 15, 025006 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  24. P. B. Johnson, and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef] [Google Scholar]
  25. E. D. Palik (ed.), Handbook of optical constants of solids (New York, Academic Press, 1985). [Google Scholar]
  26. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Optics 34, 4755–4767 (1995). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.