Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
Article Number 15029i
Number of page(s) 12
DOI https://doi.org/10.1051/jeos.2015.15029i
Published online 17 June 2015
  1. B. Jalali, “Silicon photonics,” J. Lightw. Technol. 24, 4600–4615 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  2. R. A. Soref, “The past, present, and future of silicon photonics,” J. Sel. Top. Quantum Electron. 12, 678–1687 (2006). [Google Scholar]
  3. R. A. Soref, and J. Lorenzo, “All-silicon active and passive guidedwave components for l = 1.3 and 1.6 _m,” IEEE J. Quantum Electron. 22, 873–879 (1986). [NASA ADS] [CrossRef] [Google Scholar]
  4. R. A. Soref, and B. R. Bennett, “Kramers-Kronig analysis of E-O switching in silicon,” Proc. SPIE Integr. Opt. Circuit Eng. 704, 32–37 (1986). [Google Scholar]
  5. B. Schuppert, J. Schmidtchen, and K. Petermann, “Optical channel waveguides in silicon diffused from GeSi alloy,” Electron. Lett. 25, 1500–1502 (1989). [NASA ADS] [CrossRef] [Google Scholar]
  6. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991). [NASA ADS] [CrossRef] [Google Scholar]
  7. L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E, Post, “CMOScompatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett. 43, 392–393 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  8. L. Vivien, D. Pascal, S. Lardenois, D. Marris-Morini, E. Cassan, F. Grillot, S. Laval, et al., “Light injection in SOI microwaveguides using high-efficiency grating couplers,” J. Lightw. Technol. 24, 3810–3815 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  9. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrierinjection- based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007). [CrossRef] [Google Scholar]
  10. C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, “An optical fiber-taper probe for wafer-scale microphotonic device characterization,” Opt. Express 15, 4745–4752 (2007). [CrossRef] [Google Scholar]
  11. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, et al., “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007). [CrossRef] [Google Scholar]
  12. A. Liu, R. Jones, O. Cohen, D. Hak, and M. Paniccia, “Optical amplification and lasing by stimulated Raman scattering in silicon waveguides,” J. Lightw. Technol. 24, 1440–1445 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  13. M. Casalino, L. Sirleto, L. Moretti, M. Gioffr, G. Coppola, M. Iodice, and I. Rendina, “Back-illuminated silicon resonant cavity enhanced photodetector at 1550 nm,” Physica E 41, 1097–1101 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  14. S. Rao, G. Coppola, M. A. Gioffrè, and F. G. Della Corte, “Hydrogenated amorphous silicon multi-SOI waveguide modulator with low voltage-length product,” Opt. Laser Technol. 45, 204–208 (2013). [CrossRef] [Google Scholar]
  15. F. G. Della Corte, and S. Rao, “Use of amorphous silicon for active photonic devices,” IEEE Transactions on Electron Devices 60, 1495–1505 (2013). [CrossRef] [Google Scholar]
  16. J. D. Joannopulos, R. D. Mead, and J. N. Winn, Photonic crystals: molding the flow of light (Princeton University Press, Princeton, 1995). [Google Scholar]
  17. S. G. Johnson, and J. D. Joannopoulos, Photonic crystals: the road from theory to practice (Kluwer Academic Publishers, New York, 2003). [Google Scholar]
  18. P. Dardano, L. Moretti, V. Mocella, L. Sirleto, and I. Rendina, “Investigation of a tunable T-shaped waveguides based on a silicon 2D photonic crystal,” J. Opt. A-Pure Appl. Opt. 8, S554–S560 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  19. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  20. V. Mocella, S. Cabrini, A. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, et al., “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett. 102, 133902 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  21. V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. De La Rue, “Photonic bandstructure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60, R16255 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  22. D. Peyradea, J. Torresa, D. Coquillata, R. Legrosa, J.P. Lascaraya, Y. Chenb, L. Manin-Ferlazzob, et al., “Equifrequency surfaces in GaN/sapphire photonic crystals,” Physica E 17, 423–425 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  23. X. Guo, “Surface plasmon resonance based biosensor technique: a review,” J. Biophoton. 5, 483–501 (2012). [CrossRef] [Google Scholar]
  24. A. Giorgini, S. Avino, P. Malara, G. Gagliardi, M. Casalino, G. Coppola, M. Iodice, et al., “Surface-plasmon-resonance optical-cavity enhanced refractive index,” Opt. Lett. 38, 1951–1953 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  25. J. Kneipp, H. Kneipp, and K. Kneipp, “SERS- a single-molecule and nanoscale tool for bioanalytics,” Chem. Rev. Soc. 37, 1052–1060 (2008). [CrossRef] [Google Scholar]
  26. E. De Tommasi, A. C. De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, “Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102, 081113 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  27. P. Dardano, M. Gagliardi, I. Rendina, S. Cabrini, and V. mocella, “Ellipsometric determination of permittivity in a negative index photonic crystal metamaterial,” Light Sci. Appl. 1, e42 (2012). [CrossRef] [Google Scholar]
  28. K. Ishizaki, and S. Noda, “Manipulation of photons at the surface of threedimensional photonic crystals,” Nature 460, 367–370 (2009). [Google Scholar]
  29. B. Luk'yanchunk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Ordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010). [CrossRef] [Google Scholar]
  30. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 0087403 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  31. S. Romano, and V. Mocella, “Guided resonance in negative index photonic crystals: a new approach,” Light Sci. Appl. 3, 1–6 (2014). [Google Scholar]
  32. J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave Vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 067401 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  33. C. W. Hsu, B. Zhen, S. L. Chua, and S. G. Johnson, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2, e84 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  34. C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013). [CrossRef] [Google Scholar]
  35. J. Von Neumann, and E. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z 30, 465–467 (1929) in German. [Google Scholar]
  36. T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub- Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Lett. 96, 101103 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  37. D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-enhanced silicon-on-insulator waveguide resonant photodetector with high sensitivity at 1.55 _m,” IEEE Photonic. Tech. L. 22, 1530–1532 (2010). [CrossRef] [Google Scholar]
  38. M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Nearinfrared sub-nandgap all-silicon photodetectors: state of the art and perspectives,” Sensors 10, 10571–10600 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  39. R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38, 45–56 (1931). [CrossRef] [Google Scholar]
  40. V. E. Vickers, “Model of schottky barrier hot-electron-mode photodetection,” Appl. Opt. 10, 2190–2192 (1971). [NASA ADS] [CrossRef] [Google Scholar]
  41. P. Berini, A. Olivieri, and C. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology 23, 444011 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  42. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20, 28594–28602 (2012). [CrossRef] [Google Scholar]
  43. M. Casalino, L. Sirleto, L Moretti, M. Gioffrè, G. Coppola, and I. Rendina, “Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 micron: fabrication and characterization,” Appl. Phys. Lett. 92, 251104 (2008). [CrossRef] [Google Scholar]
  44. M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirelto, “Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol. 28, 3266–3272 (2010). [NASA ADS] [Google Scholar]
  45. M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express 20, 12599–12609 (2012). [CrossRef] [Google Scholar]
  46. M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola, “Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current,” Opt. Express 21, 28072–28082 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  47. M. Amirmazlaghani, F. Raissi, O. Habibpour, J. Vukusic, and J. Stake, “Graphene-Si Schottky IR detector,” IEEE J. Quant. Elect. 49, 589–594 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  48. C. Chen, M. Aykol, C. Chang, A. F. J. Levi, and S. B. Cronin, “Graphene-silicon Schottky diodes,” Nano Lett. 11, 1863–1867 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  49. M. A. Muriel, and A. Carballar, “Internal field distributions in fiber Bragg gratings,” IEEE Photonic. Tech. L. 9, 955–957 (1997). [Google Scholar]
  50. M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, et al., “Microcavity-integrated graphene photodetector,” Nano Lett. 13, 2773–2777 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  51. E. D. Palik, Handbook of optical constants of solids (Academic Press, San Diego, 1998). [Google Scholar]
  52. M. Casalino, G. Coppola, M. Iodice, I. Rendina, U. Sassi, A. Lombardo, S. Milana, et al., “Silicon photodetectors based on internal photoemission effect: the challenge of detecting near infrared light,” in Proceedings to the 16th International Conference on Transparent Optical Networks, 1-4 (IEEE, Graz, 2014). [Google Scholar]
  53. I. Rea, A. Lamberti, I. Rendina, G. Coppola, M. Gioffrè, M. Iodice, M. Casalino, et al., “Fabrication and characterization of a porous silicon based microarray for label-free optical monitoring of biomolecular interactions,” J. Appl. Phys. 107, 014513 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  54. I. Rea, E. Orabona, A. Lamberti, I. Rendina, and L. De Stefano, “A microfluidics assisted porous silicon array for optical label-free biochemical sensing,” Biomicrofluidics 5, 034120 (2011). [CrossRef] [Google Scholar]
  55. E. Orabona, I. Rea, I. Rendina, and L. De Stefano, “Numerical optimization of a microfluidic assisted microarray for the detection of biochemical interactions,” Sensors 11, 9658–9666 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  56. L. De Stefano, I. Rea, E. Orabona, and I. Rendina, “Microfluidics assisted biosensors for label-free optical monitoring of molecular interactions,” Sensor. Actuat. B-Chem. 179, 157–162 (2013). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.