Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
|
|
---|---|---|
Article Number | 15028 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.2971/jeos.2015.15028 | |
Published online | 02 June 2015 |
- M. Manceau, D. Angmo, M. Jorgensen, and F. C. Krebs, “ITO-free flexible polymer solar cells: From small model devices to roll-toroll processed large modules,” Org. Electron. 12, 566–574 (2011). [CrossRef] [Google Scholar]
- J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006). [CrossRef] [Google Scholar]
- M. R. Lilliedal, A. J. Medford, M. V. Madsen, K. Norrman, and F. C. Krebs, “The effect of post-processing treatments on inflection points in current-voltage curves of roll-to-roll processed polymer photovoltaics,” Solar. Energy. Mat. Sol. C. 94, 2018–2031 (2010). [CrossRef] [Google Scholar]
- J. E. Carle, J. W. Andreasen, M. Jorgensen, and F. C. Krebs, “Low band gap polymers based on 1,4-dialkoxybenzene, thiophene, bithiophene donors and the benzothiadiazole acceptor,” Solar. Energy. Mat. Sol. C. 94, 774–780 (2010). [CrossRef] [Google Scholar]
- G. G. Zhao, Y. J. He, and Y. F. Li, “6.5% Efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization,” Adv. Mater. 22, 4355–4358 (2010). [CrossRef] [Google Scholar]
- Y. Zhao, Z. Xie, C. Qin, Y. Qu, Y. Geng, and L. Wang, “Enhanced charge collection in polymer photovoltaic cells by using an ethanol-soluble conjugated polyfluorene as cathode buffer layer,” Solar. Energy. Mat. Sol. C. 93, 604–608 (2009). [CrossRef] [Google Scholar]
- J. Weickert, H. Sun, C. Palumbiny, H. C. Hesse, and L. S. Mende, “Spray-deposited PEDOT:PSS for inverted organic solar cells,” Sol. Energy. Mater. Sol. C. 94, 2371–2374 (2010). [CrossRef] [Google Scholar]
- K. J. Kim, Y. S. Kim, W. S. Kang, B. H. Kang, S. H. Yeom, D. E. Kim, J. H. Kim, et al., “Inspection of substrate-heated modiïňĄed PEDOT:PSS morphology for all spray deposited organic photovoltaics,” Solar. Energy. Mat. Sol. C. 94, (2010) 1303–1306. [CrossRef] [Google Scholar]
- K. Norrman, M. V. Madsen, S. A. Gevorgyan, and F. C. Krebs, “Degradation patterns in water and oxygen of an inverted polymer solar cell,” J. Am. Chem. Soc. 132, 16883–16892 (2010). [CrossRef] [PubMed] [Google Scholar]
- K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley, and J. R. Durrant, “Degradation of organic solar cells due to air exposure,” Solar. Energy. Mat. Sol. C. 90, 3520–3530 (2006). [CrossRef] [Google Scholar]
- N. Koch, A. Vollmer, and A. Elschner, “Influence of water on the work function of conducting poly(3,4- ethylenedioxythiophene)/poly(styrenesulfonate),” Appl. Phys. Lett. 90, 043512–043514 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- S. W. Tong, C. F. Zhang, C. Y. Jiang, G. Liu, Q. D. Ling, E. T. Kang, D. S. H. Chan, et al., “Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer,” Chem. Phys. Lett. 453, 73–76 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- M. Jorgensen, K. Norrman, and F. C. Krebs, “Stability/degradation of polymer solar cells,” Solar. Energy. Mat. Sol. C. 92, 686–714 (2008). [CrossRef] [Google Scholar]
- J. Jung, D. Kim, W. S. Shin, S. J. Moon, C. Lee, and S. C. Yoon, “Highly efficient organic photovoltaic cells with molybdenum oxide buffer layer,” Jpn. J. Appl. Phys. 49, 05EB05-1–05EB05-4 (2010). [NASA ADS] [Google Scholar]
- M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, “p-Type semiconducting nickel oxide as an efficiencyenhancing anode interfacial layer in polymer bulk-heterojunction solar cells,” Proc. Natl. Acad. Sci. 105, 2783–2787 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- N. Espinosa, H. F. Dam, D. M. Tanenbaum, J. W. Andreasen, M. Jorgensen, and F. C. Krebs, “Roll-to-roll processing of inverted polymer solar cells usin hydrated vanadium (V) oxide as a PEDOT:PSS replacement,” Materials 4, 169–182 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- D. W. Zhao, S. T. Tan, L. Ke, P. Liu, A. K. K. Kyaw, X. W. Sun, G. Q. Lo, et al., “Optimization of an inverted organic solar cell,” Solar. Energy. Mat. Sol. C. 94, 985–991 (2010). [CrossRef] [Google Scholar]
- S. W. Tong, C. F. Zhang, C. Y. Jiang, G. Liu, Q. D. Ling, E. T. Kang, D. S. H. Chan, et al., “Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer,” Chem. Phys. Lett. 453, 73–76 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- W. Z. Cai, X. Gong, and Y. Cao, “Polymer solar cells: recent development and possible routes for improvement in the performance,” Solar. Energy. Mat. Sol. C. 94, 114–127 (2010). [CrossRef] [Google Scholar]
- N. V. Tkachenko, V. Chukharev, P. Kaplas, A. Tolkki, A. Efimov, K. Haring, J. Viheriala, et al., “Photoconductivity of thin organic films,” Appl. Surf. Sci. 256, 3900–3905 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- A. Moliton, and J. M. Nunzi, “How to model the behaviour of photovoltaic cells,” Polym. Int. 55, 583–600 (2006). [CrossRef] [Google Scholar]
- C. F. Zhang, S. W. Tong, C. Y. Jiang, E. T. Kang, D. S. H. Chan, and C. X. Zhu, “Simple tandem organic photovoltaic cells for improved energy conversion efficiency,” Appl. Phys. Lett. 92, 083310-1–083310-3 (2008). [NASA ADS] [Google Scholar]
- F. Cheng, G. Fang, X. Fan, H. Huang, Q. Zheng, P. Qin, H. Lei, et al., “Enhancing the performance of P3HT:ICBA based polymer solar cells using LiF as electron collecting buffer layer and UV-ozone treated MoO3 as hole collecting buffer layer,” Solar. Energy. Mat. Sol. C. 110, 63–68 (2013). [CrossRef] [Google Scholar]
- M. Ghasemi Varnamkhasti, H. R. Fallah, M. Mostajaboddavati, R. Ghasemi, and A. Hassanzadeh, “Comparison of metal oxides as anode buffer layer for small molecule organic photovoltaic cells,” Solar. Energy. Mat. Sol. C. 98, 379–384 (2012). [CrossRef] [Google Scholar]
- A. Kuwabara, T. Nakayama, K. Uozumi, T. Yamaguchi, and K. Takahashi, “Highly durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer,” Solar. Energy. Mat. Sol. C. 92, 1476–1482 (2008). [CrossRef] [Google Scholar]
- S. H. B. Gholamkhass, and S. Holdcroft, “Enhancing the durability of polymer solar cells using gold nano-dots,” Solar. Energy. Mat. Sol. C. 95, 3106–3113 (2011). [CrossRef] [Google Scholar]
- S. S. Ardestani, R. Ajeian, M. N. Badrabadi, and M. Tavakkoli, “Improvement in stability of bilayer organic solar cells using an ultrathin Au layer,” Solar. Energy. Mat. Sol. C. 111, 107–111 (2013). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.