Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
Article Number 15022
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2015.15022
Published online 22 April 2015
  1. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322, 1857–1861 (2008). [CrossRef] [PubMed] [Google Scholar]
  2. P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11, 9 (2009). [Google Scholar]
  3. T. Meyer, M. Schmitt, B. Dietzek, and J. Popp, “Accumulating advantages, reducing limitations: Multimodal nonlinear imaging in biomedical sciences – the synergy of multiple contrast mechanisms,” J. Biophotonics 6, 887–904 (2013). [CrossRef] [Google Scholar]
  4. Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. Kajiyama, K. Fukui, and K. Itoh, “Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses,” Opt. Express 18, 13708–13719 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  5. K. Nose, Y. Ozeki, T. Kishi, K. Sumimura, N. Nishizawa, K. Fukui, Y. Kanematsu, and K. Itoh, “Sensitivity enhancement of fiber-laserbased stimulated Raman scattering microscopy by collinear balanced detection technique,” Opt. Express 20, 13958–13965 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  6. C. W. Freudiger, W. L. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8, 153–159 (2014). [NASA ADS] [CrossRef] [Google Scholar]
  7. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering,” Science 330, 1368–1370 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  8. Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6, 844–850 (2012). [Google Scholar]
  9. C. W. Freudiger, R. Pfannl, D. A. Orringer, B. G. Saar, M. B. Ji, Q. Zeng, L. Ottoboni, W. Ying, C. Waeber, J. R. Sims, P. L. De Jager, O. Sagher, M. A. Philbert, X. Y. Xu, S. Kesari, X. S. Xie, and G. S. Young, “Multicolored stain-free histopathology with coherent Raman imaging,” Lab. Invest. 92, 1492–1502 (2012). [CrossRef] [Google Scholar]
  10. M. N. Slipchenko, R. A. Oglesbee, D. L. Zhang, W. Wu, and J. X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J. Biophotonics 5, 801–807 (2012). [CrossRef] [Google Scholar]
  11. S. Hong, T. Chen, Y. Zhu, A. Li, Y. Huang, and X. Chen, “Live-Cell Stimulated Raman Scattering Imaging of Alkyne-Tagged Biomolecules,” Angew. Chem. Int. Edit. 53, 5827–5831 (2014). [CrossRef] [Google Scholar]
  12. L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11, 410–2 (2014). [CrossRef] [PubMed] [Google Scholar]
  13. W. Rock, M. Bonn, and S. H. Parekh, “Near shot-noise limited hyperspectral stimulated Raman scattering spectroscopy using low energy lasers and a fast CMOS array,” Opt. Express 21, 15113–15120 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  14. X. Zhang, M. B. J. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-Free Live-Cell Imaging of Nucleic Acids Using Stimulated Raman Scattering Microscopy,” Chemphyschem 13, 1054–1059 (2012). [CrossRef] [Google Scholar]
  15. Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express 17, 3651–3658 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  16. Y. Fu, H. F. Wang, R. Y. Shi, and J. X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express 14, 3942–3951 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  17. C. W. Freudiger, M. B. J. Roeffaers, X. Zhang, B. G. Saar, W. Min, and X. S. Xie, “Optical Heterodyne-Detected Raman-Induced Kerr Effect (OHD-RIKE) Microscopy,” J. Phys. Chem. B 115, 5574–5581 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  18. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti- Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241–243 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  19. K. I. Popov, A. F. Pegoraro, A. Stolow, and L. Ramunno, “Image formation in CARS and SRS: effect of an inhomogeneous nonresonant background medium,” Opt. Lett. 37, 473–475 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  20. T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, “Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. U S A 104, 14658–14663 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  21. A. Hopt and E. Neher, “Highly nonlinear photodamage in twophoton fluorescence microscopy,” Biophys. J. 80, 2029–2036 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  22. K. König, T. W. Becker, P. Fischer, I. Riemann, and K. J. Halbhuber, “Pulse-length dependence of cellular response to intense nearinfrared laser pulses in multiphoton microscopes,” Opt. Lett. 24, 113–115 (1999). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.