Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
|
|
---|---|---|
Article Number | 15012 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.2971/jeos.2015.15012 | |
Published online | 04 March 2015 |
- L. J. Walsh, “The current status of laser applications in dentistry,” Aust. Dent. J. 48 146–155 (2003). [CrossRef] [Google Scholar]
- E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, “Optical clearing in cranial bone,” Adv. Opt. Tech. 2008, 267867 (2008). [CrossRef] [Google Scholar]
- D. K. Sardar, G. Y. Swanland, R. M. Yow, R. J. Thomas, and A. T. Tsin, “Optical properties of ocular tissues in the near infrared region,” Lasers Med. Sci. 22 46–52 (2007). [CrossRef] [Google Scholar]
- M. Sulieman, “An overview of the use of lasers in general dental practice: 2. Laser wavelengths, soft and hard tissue clinical applications,” Dent. Update 32, 286–288, 291-296 (2005). [Google Scholar]
- H. Deppe, and H. H. Horch, “Laser applications in oral surgery and implant dentistry,” Lasers Med. Sci. 22 217–221 (2007). [CrossRef] [Google Scholar]
- L. J. Walsh, “Dental lasers: Some basic principles,” Postgrad. Dent. 4 26–29 (1994). [Google Scholar]
- S. Schultze-Mosgau, B. K. Lee, J. Ries, K. Amann, and J. Wiltfang, “In vitro cultured autologous pre-confluent oral keratinocytes for experimental prefabrication of oral mucosa,” Int. J. Oral. Max. Surg. 33 476–485 (2004). [CrossRef] [Google Scholar]
- J. Song, K. Izumi, T. Lanigan, and S. E. Feinberg, “Development and characterization of a canine oral mucosa equivalent in a serum free environment,” J. Biomed. Mater. Res. 71 143–153 (2004). [CrossRef] [Google Scholar]
- G. Lauer, and R. Schimming, “Tissue-engineered mucosa graft for reconstruction of the intraoral lining after freeing of the tongue: a clinical and immunohistologic study,” Int. J. Oral. Max. Surg. 59 169–175 (2001). [CrossRef] [Google Scholar]
- M. C. Sanchez-Quevedo, M. Alaminos, L. M. Capitan, G. Moreu, I. Garzon, P. V. Crespo, and A. Campos, “Histological and histochemical evaluation of human oral mucosa constructs developed by tissue engineering,” Histol. Histopathol. 22 631–640 (2007). [Google Scholar]
- I. Garzón, M. C. Sánchez-Quevedo, G. Moreu, M. González-Jaranay, M. González-Andrades, A. Montalvo, M. Alaminos, and A. Campos, “In vitro and in vivo cytokeratin patterns of expression in bioengineered human periodontal mucosa,” J. Periodontal Res. 44 588–597 (2009). [CrossRef] [Google Scholar]
- M. Moharamzadeh, I. M. Brook, R. Van Noort, A. M. Scutt, and M. H. Thornhill, “Tissue-engineered oral mucosa: a review of the scientific literature,” J. Dent. Res. 86 115–124 (2007). [CrossRef] [Google Scholar]
- S. A. Prahl, M. J. C. Van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Optics 32 559–568 (1993). [NASA ADS] [CrossRef] [Google Scholar]
- S. Chandrasekhar, Radiative transfer (Ed. Dover, New York, 1960). [Google Scholar]
- D. K. Sardar, B. G. Yust, F. J. Barrera, L. C. Mimun, and A. T. C. Tsin, “Optical absorption and scattering of bovine cornea, lens and retina in the visible region,” Lasers Med. Sci. 24 839–847 (2009). [CrossRef] [Google Scholar]
- A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm,” J. Phys. D. Appl. Phys. 38 2543–2555 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- D. K. Sardar, and L. B. Levy. “Optical properties of whole blood,” Lasers Med. Sci. 13 106–111 (1998). [CrossRef] [Google Scholar]
- W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Elect. 26 2166–2171 (1990). [NASA ADS] [CrossRef] [Google Scholar]
- P. L. McCormack, “Tranexamic acid: a review of its use in the treatment of hyperfibrinolysis,” Drugs 72 585–617 (2012). [Google Scholar]
- S. Llames, E. García, V. García, M. del Río, F. Larcher, J. L. Jorcano, E. López, et al., “Clinical results of an autologous engineered skin,” Cell Tissue Bank 7 47–53 (2006). [CrossRef] [Google Scholar]
- I. Peõa, L. M. Junquera, A. Meana, E. García, V. García, and J. C. De Vicente, “In vitro engineering of complete autologous oral mucosa equivalents: characterization of a novel scaffold,” J. Periodontal. Res. 45 375–380 (2010). [CrossRef] [Google Scholar]
- I Garzon, D. Serrato, O. Roda, M. Del Carmen Sanchez-Quevedo, M. Gonzales-Jaranay, G. Moreu, R. Nieto-Aguilar, et al., “In vitro cytokeratin expression profiling of human oral mucosa substitutes developed by tissue engineering,” Int. J. Artif. Organs 32 711–719 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- S. San Martin, M. Alaminos, T. M. Zorn, M. C. Sánchez-Quevedo, I. Garzón, I. A. Rodriguez, and A. Campos, “The effects of fibrin and fibrin-agarose on the extracellular matrix profile of bioengineered oral mucosa” J. Tissue Eng. Regen. M. 7 10–19 (2013). [CrossRef] [Google Scholar]
- E. Hadjipanayi, M. Ananta, M. Binkowski, I. Streeter, Z. Lu, Z. F. Cui, R. A. Brown, et al., “Mechanisms of structure generation during plastic compression on nanofibrillar collagen hydrogel scaffolds: towards engineering of collagen,” J. Tissue Eng. Reg. M. 5 505–519 (2011). [CrossRef] [Google Scholar]
- A. M. Ionescu, M. Alaminos, J. de la Cruz Cardona, J. de Dios García- López Durán, M. González-Andrades, R. Ghinea, A. Campos, et al., “Investigating a novel nanostructured fibrin-agarose biomaterial for human cornea tissue engineering: rheological properties,” J. Mech. Behav. Biomed. 4 1963–1973 (2011). [CrossRef] [Google Scholar]
- J. W. Pickering, J. C. M. Moes, S. A. Prahl, and M. J. C. van Gemert, “Two integrating spheres with an intervening scattering sample,” J. Opt. Soc. Am. A 9 621–631 (1992). [NASA ADS] [CrossRef] [Google Scholar]
- D. K. Sardar, R. M. Yow, A. T. Tsin, and R. Sardar, “Optical scattering, absorption and polarization of healthy and neovascularized human retinal tissues,” J. Biomed. Opt. 10, 051501.1–8 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- B. G. Yust, L. C. Mimun, and D. K. Sardar, “Optical absorption and scattering of bovine cornea, lens, and retina in the near-infrared region,” Lasers Med. Sci. 27 413–422 (2012). [CrossRef] [Google Scholar]
- T. Moffit, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Optics 11, 041103.1–10 (2006). [Google Scholar]
- M. Ueda, K. Ebata, and T. Kaneda, “In Vitro fabrication of bioartificial mucosa for reconstruction of oral mucosa: Basic research and clinical application,” Ann. Plast. Surg. 27 540–549 (1991). [CrossRef] [Google Scholar]
- I. Schlenz, K. J. Korak, R. Kunstfeld, K. Vinzenz, H. Plenk Jr, and J. Holle, “The dermis-prelaminated scapula flap for reconstructions of the hard palate and the alveolar ridge: a clinical and histologic evaluation,” Plast. Reconstr. Surg. 108 1519–1524 (2001). [CrossRef] [Google Scholar]
- K. Izumi, S. E. Feinberg, A. Iida, and M. Yoshizawa “Intraoral grafting of an ex vivo produced oral mucosa equivalent: a preliminary report,” Int. J. Oral. Max. Surg. 32 188–197 (2003). [CrossRef] [Google Scholar]
- M. Alaminos, M. Del Carmen Sánchez-Quevedo, J. I. Muõoz-Avila, D. Serrano, S. Medialdea, I. Carreras, and A. Campos, “Construction of a complete rabbit cornea substitute using a fibrin-agarose scaffold,” Invest. Ophth. Vis. Sci. 47 3311–3317 (2006). [CrossRef] [Google Scholar]
- M. G. Haugh, S. D. Thorpe, T. Vinardell, C. T. Buckley, and D. J. Kelly, “The application of plastic compression to modulate fibrin hydrogel mechanical properties,” J. Mech. Behav. Biomed. 16 66–72 (2012). [CrossRef] [Google Scholar]
- J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Optics 37 3586–3593 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- A. K. Popp, M. T. Valentine, P. D. Kaplan, and D. A. Weitz “Microscopic origin of light scattering in tissue,” Appl. Opt. 42 2871–2880 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026.1–064026.9 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- J. R. Mourant, M. Canpolat, C. Brocker, O. Esponda-Ramos, T. M. Johnson, A. Matanock, K. Stetter, et al., “Light scattering from cells: the contributions of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5 131–137 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- C. T. Buckley, S. D. Thorpe, F. J. O’Brien, A. J. Robinson, and D. J. Kelly, “The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels,” J. Mech. Behav. Biomed. 2 512–521 (2009). [CrossRef] [Google Scholar]
- A. C. Aufderheide, and K. A. Athanasiou, “Comparison of scaffolds and culture conditions for tissue engineering of the knee meniscus,” Tissue Eng. 11 1095–1104 (2005). [CrossRef] [Google Scholar]
- I. A. Rodríguez, M. T. López-López, A. C. Oliveira, M. C. Sánchez- Quevedo, A. Campos, M. Alaminos, and J. D. Durán, “Rheological characterization of human fibrin and fibrin-agarose oral mucosa substitutes generated by tissue engineering,” J. Tissue Eng. Regen. M. 6 636–644 (2012). [CrossRef] [Google Scholar]
- D. E. Birk, E. I. Zycband, and S. Woodruff, “Collagen fibrinogenesis in situ: fibril segments become long fibrils as the developing tendon matures,” Dev. Dynam. 208 291–298 (1997). [Google Scholar]
- T. Starborg, Y. Lu, K. E. Kadler, and D. F. Holmes “Electron microscopy of collagen fibril structure in vitro and in vivo, including three-dimensional reconstruction,” Methods Cell. Biol. 88 319–345 (2008). [CrossRef] [Google Scholar]
- K. M. Meek, D. W. Leonard, C. J. Connon, S. Dennis, and S. Khan, “Transparency, swelling and scarring in the corneal stroma,” Eye 17 927–936 (2003). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.