Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 10, 2015
Article Number 15007
Number of page(s) 7
DOI https://doi.org/10.2971/jeos.2015.15007
Published online 19 February 2015
  1. N. Johansson, J. Salbeck, J. Bauer, F. Weissörtel, P. Bröms, A. Andersson, and W. R. Salaneck, “Solid-state amplified spontaneous emission in some spiro-type molecules: a new concept for the design of solid-state lasing materials,” Adv. Mater. 10 1136–1141 (1998). [Google Scholar]
  2. J. Salbeck, M. Schörner, and T. Fuhrmann, “Optical amplification in spiro-type molecular glasses,” Thin Solid Films 417 20–25 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  3. T. Spehr, R. Pudzich, T. Fuhrmann, and J. Salbeck, “Highly efficient light emitters based on the spiro concept,” Org. Electron. 4 61–69 (2003). [CrossRef] [Google Scholar]
  4. D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, O. Werner, M. Kröger, E. Becker, et al., “Deep blue widely tunable organic solid-state laser based on a spirobifluorene derivative,” Appl. Phys. Lett. 84 4693–4695 (2004). [CrossRef] [Google Scholar]
  5. D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, et al., “An ultraviolet organic thin-film solidstate laser for biomarker applications,” Adv. Mater. 17 31–34 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  6. T. Spehr, A. Siebert, T. Fuhrmann-Lieker, J. Salbeck, T. Rabe, T. Riedl, H.-H. Johannes, et al., “Organic solid-state laser based on spiro-terphenyl,” Appl. Phys. Lett. 87, 1161103 (2005). [CrossRef] [Google Scholar]
  7. T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, et al., “Tunable organic thin-film laser pumped by an inorganic violet laser diode,” Appl. Phys. Lett. 88, 241116 (2006). [CrossRef] [Google Scholar]
  8. A. E. Vasdekis, G. Tsiminis, J. C. Ribierre, L. O'Faolain, T. F. Krauss, G. A. Turnbull, and I. D. W. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14 9211–9216 (2006). [CrossRef] [Google Scholar]
  9. Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: a polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92, 163306 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  10. N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugatedpolymer microcavities,” Nature 382 695–697 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  11. H. Hillmer, “Mikrolaser-Bauelement und Verfahren zu dessen Herstellung,” DE10331586B4 (2003). [Google Scholar]
  12. M. Berggren, A. Dodabalapur, and R. E. Slusher, “Stimulated emission and lasing in dye-doped organic thin films with Forster transfer,” Appl. Phys. Lett. 71 2230–2232 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  13. D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, et al., “Laser threshold reduction in an all-spiro guest-host-system,” Appl. Phys. Lett. 85 1659–1661 (2004). [CrossRef] [Google Scholar]
  14. N. Miyaura, and A. Suzuki, “Palladium-catalyzed cross coupling reactions of organoboron compounds,” Chem. Rev. 95 2457–2483 (1995). [CrossRef] [Google Scholar]
  15. G. E. Jellison, and F. A. Modine, “Parametrization of the optical functions of amorphous materials at the interband region,” Appl. Phys. Lett. 69 371–373 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  16. M. Abdel-Awwad, H. Luan, F. Messow, T. Kusserow, A. Wiske, A. Siebert, T. Fuhrmann-Lieker, et al, “Optical amplification and photodegradation in films of spiro-quaterphenyl and its derivatives,” J. Lumin. 159 47–54 (2015). [NASA ADS] [CrossRef] [Google Scholar]
  17. H. So, H. Watanabe, M. Yahiro, Y. Yang, Y. Oki, and C. Adachi, “Highly photostable distributed feedback-polymer waveguide blue laser using spirobifluorene derivatives,” Opt. Mater. 33 755–758 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  18. B. Schartel, T. Dammerau, and M. Hennecke, “Photo- and thermooxidative stability of aromatic spiro-linked bichromophoric cross-shaped molecules,” Phys. Chem. Chem. Phys. 2 4690–4696 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  19. H. Kogelnik, and C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18 152–154 (1971). [NASA ADS] [CrossRef] [Google Scholar]
  20. K. P. Kretsch, C. Belton, S. Lipson, W. J. Blau, F. Z. Henari, H. Rost, S. Pfeiffer, et al., “Amplified spontaneous emission and optical gain spectra from stilbenoid and phenylene vinylene derivative model compounds,” J. App. Phys. 86 6155–6159 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  21. H. Nakanotani, S. Akiyama, D. Ohnishi, M. Moriwake, M. Yahiro, T. Yoshihara, S. Tobita, et al., “Extremely low-threshold amplified spontaneous emission of 9,9' spirobifluorene derivatives and electroluminescence from field-effect transistor structure,” Adv. Funct. Mater. 17 2328–2335 (2007). [CrossRef] [Google Scholar]
  22. T. Spehr, Fluoreszenz und Lasertätigkeit in dünnen amorphen Schichten von Spirobifluorenderivaten (PhD thesis, University of Kassel, 2008). [Google Scholar]
  23. Y.-Z. Huang, Z. Pan, and R.-H. Wu, “Analysis of the optical confinement factor in semiconductor lasers,” J. Appl. Phys. 79 3827–3830 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  24. T. G. Fox, “Influence of diluent and copolymer composition on the glass temperature of a polymer system,” Bull. Am. Phys. Soc. 1 123–128 (1956). [Google Scholar]
  25. A. Siebert, Synthese und Charakterisierung neuer symmetrischer und unsymmetrischer Spiro-p-oligophenyle (PhD thesis, University of Kassel, 2010). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.