Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
|
|
---|---|---|
Article Number | 14045i | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.2971/jeos.2014.14045i | |
Published online | 13 October 2014 |
- L. Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure”, Phil. Mag. S. 5 24(147), 145–159 (1887). [Google Scholar]
- A. Yariv, and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, Oxford, 2007). [Google Scholar]
- E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics”, Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed] [Google Scholar]
- S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Phys. Rev. Lett. 58(23), 2486–2489 (1987). [NASA ADS] [CrossRef] [Google Scholar]
- J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, (Princeton University Press, New Jersey, 2008). [Google Scholar]
- Y. Akahane, T. Asano, B-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal”, Nature 425, 944–947 (2003). [CrossRef] [PubMed] [Google Scholar]
- B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity”, Nat. Mater. 4, 207–210 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism phenomena in planar photonic crystals”, IEEE J. Quantum Elect. 38, 915–918 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals”, Appl. Phys. Lett. 74, 1212–1214 (1999). [CrossRef] [Google Scholar]
- E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity”, Opt. Lett. 29, 1093–1095 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- H. Kurt, M. N. Erim, and N. Erim, “Various photonic crystal biosensor configurations based on optical surface modes”, Sensor. Actuat. B-Chem. 165(1), 68–75 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- T. F. Krauss, R. M. D. L. Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths”, Nature 383(6602), 699–702 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and L. Kim, “Two-dimensional photonic band-gap defect mode laser”, Science 284, 1819–1821 (1999). [CrossRef] [Google Scholar]
- S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure”, Nature 407, 606–610 (2000). [CrossRef] [Google Scholar]
- H. Kurt, “Theoretical study of directional emission enhancement from photonic crystal waveguides with tapered exits”, IEEE Photonic. Tech. L. 20, 1682–1684 (2008). [CrossRef] [Google Scholar]
- A. E. Akosman, M. Mutlu, H. Kurt, and E. Ozbay, “Compact wavelength de-multiplexer design using slow light regime of photonic crystal waveguides”, Opt. Express 19, 24129–24138 (2011). [CrossRef] [Google Scholar]
- T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, and E. L. Thomas, “Hypersonic Phononic Crystals”, Phys. Rev. Lett. 94, 115501 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, “Guiding and bending of acoustic Waves in Highly Confined Phononic Crystal Waveguides”, Appl. Phys. Lett. 84(22), 4400–4402 (2004). [Google Scholar]
- S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, “Focusing of Sound in a 3D Phononic Crystal”, Phys. Rev. Lett. 93(2), 024301 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- V. Romero-Garcia, R. Pico, A. Cebrecos, V. J. Sanchez-Morcillo, and K. Staliunas, “Enhancement of sound in chirped sonic crystals”, Appl. Phys. Let. 102, 091906 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- D. S. Wiersma, “Disordered photonics”, Nat. Photonics 7, 188–196 (2013). [CrossRef] [Google Scholar]
- E. R. Martins, J.T. Li, Y. K. Liu, V. Depauw, Z. X. Chen, J. Y. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control”, Nat. Commun. 4, 2665 (2013). [Google Scholar]
- M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light”, Nat. Photonics 7, 197–204 (2013). [CrossRef] [Google Scholar]
- B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip”, Nat. Photonics 7(9), 746–751 (2013). [Google Scholar]
- H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder”, Phys. Rev. Lett. 82, 2278–2281 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing”, Nat. Photonics 2, 429–432 (2008). [Google Scholar]
- N. M. Lawandy, “Disordered media: Coherent random lasing”, Nat. Phys. 6, 246–248 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- V. Roppo, D. Dumay, J. Trull, C. Cojocaru, S. M. Saltiel, K. Staliunas, R. Vilaseca, et al., “Planar second-harmonic generation with noncollinear pumps in disordered media”, Opt. Express 16, 14192–14199 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- Z. V. Vardeny, A. Nahata, and A. Agrawal, “Optics of photonic quasicrystals”, Nat. Photonics 7, 177–187 (2013). [CrossRef] [Google Scholar]
- M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals”, Nature 404, 740–743 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- N. D. Lai, J. H. Lin, Y. Y. Huang, and C. C. Hsu, “Fabrication of twoand three-dimensional quasi-periodic structures with 12-fold symmetry by interference technique”, Opt. Express 14, 10746–10752 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type Lattice”, Phys. Rev. Lett. 94, 183903 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. M. De La Rue, and P. Millar, “Two-dimensional Penrose-tiled photonic quasicrystals: diffraction of light and fractal density of modes”, J. Mod. Optic. 47(11), 1771–1778 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- Y. A. Vlasov, M. I. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in a disordered photonic crystal”, Phys. Rev. B. 60, 1555–1562 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- M. Werchner, M. Schafer, M. Kira, S. W. Koch, J. Sweet, J. D. Olitzky, J. Hendrickson, et al., “One dimensional resonant Fibonacci quasicrystals: noncanonical linear and canonical nonlinear effects”, Opt. Express 17, 6813–6828 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers”, Phys. Rev. Lett. 72, 633–636 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic Band Gaps in Two Dimensional Photonic Quasicrystals”, Phys. Rev. Lett. 80, 956–959 (1998). [CrossRef] [Google Scholar]
- M. C. Rechtsman, H.-C. Jeong, P. M. Chaikin, S. Torquato, and P. J. Steinhardt, “Optimized Structures for Photonic Quasicrystals”, Phys. Rev. Lett. 101, 073902 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- M. Florescu, S. Torquato, and P. J. Steinhardt, “Complete band gaps in two-dimensional photonic quasicrystals”, Phys. Rev. B 80, 155112 (2009). [CrossRef] [Google Scholar]
- W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, “Experimental measurement of the photonic properties of icosahedral quasicrystals”, Nature 436, 993–996 (2005). [CrossRef] [Google Scholar]
- J. Hung Lin, W. L. Chang, H-Y. Lin, T-H. Chou, H-C. Kan, and C. C. Hsu, “Enhancing light extraction efficiency of polymer lightemitting diodes with a 12-fold photonic quasi crystal”, Opt. Express 21, 22090–22097 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- C. Kittle, Introduction to solid state physics (John Wiley & Sons, New York, 1996). [Google Scholar]
- Q. Gong, and X. Hu, Photonic Crystals: Principle and Applications (Pan Stanford Publishing, Singapore, 2012). [Google Scholar]
- Z-Y. Li, B-Y Gu, and G-Z Yang, “Large absolute band gap in 2D anisotropic Photonic crystals”, Phys. Rev. Lett. 81, 2574–2577 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- C. M. Anderson, and K. P. Giapis, “Larger two-dimensional Photonic band gaps”, Phys. Rev. Lett. 77, 2949–2952 (1996). [CrossRef] [Google Scholar]
- X. Zhang, and Z-Q Zhang, “Creating a gap without symmetry breaking in two-dimensional photonic crystals”, Phys. Rev. B 61, 9847–9850 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- N. Susa, “Large absolute and polarization-independent photonic band gaps for various lattice structures and rod shapes”, J. Appl. Phys. 91, 3501–3510 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- M. Agio, and L. C. Andreani, “Complete photonic band gap in a two-dimensional chessboard lattice”, Phys. Rev. B 61, 15519–15522 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- R. Wang, X-H. Wang, B-Y. Gu, and G-Z. Yang, “Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals”, J. Appl. Phys. 90, 4307–4313 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- T. F. Khalkhali, B. Rezaei, and M. Kalafi, “Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals”, Opt. Commun. 284(13), 3315–3322 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- P. Shi, K. Huang, and Y-P. Li, “Photonic crystal with complex unit cell for large complete band gap”, Opt. Commun. 285(13), 3128–3132 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2005). [CrossRef] [Google Scholar]
- S. H. Moosavi Mehr, and S. Khorasani, “Influence of asymmetry on the band structure of photonic crystals”, Proc. SPIE 7609, 76091G (2010). [NASA ADS] [CrossRef] [Google Scholar]
- P. G. Luan, Z. Ye, “Two dimensional photonic crystals”, arXiv:condmat/0105428 (2001). [Google Scholar]
- J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals (Princeton University Press, Princeton, 2008). [Google Scholar]
- S. Johnson, and J. Joannopoulos, “Block-iterative frequencydomain methods for Maxwell’s equations in a planewave basis”, Opt. Express 8, 173–190 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- D. E. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective”, Am. J. Phys. 50, 704–709 (1982). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Kurosaka, S. Iwahashi, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “Band structure observation of 2D photonic crystal with various V-shaped air-hole arrangements”, IEICE Electron. Expr. 6, 966–971 (2009). [CrossRef] [Google Scholar]
- R. H. Petrucci, R. S. Harwood, and F. G. Herring, General Chemistry: Principles and Modern Applications (Pearson Prentice Hall, New Jersey, 2002). [Google Scholar]
- E. L. Eliel and S. H. Wilen, Stereochemistry of Organic Compounds (Wiley, Chichester, 1994). [Google Scholar]
- A. D. McNaught and A. Wilkinson, Compendium of Chemical Terminology (Blackwell Scientific Publications, Oxford 1997). [Google Scholar]
- L. Pasteur, Researches on the molecular asymmetry of natural organic products (1848). English translation of French original, published by Alembic Club Reprints (Vol. 14, pp. 1–46) in 1905, facsimile reproduction by SPIE in a 1990 book. [Google Scholar]
- L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, Cambridge, 2004). [CrossRef] [Google Scholar]
- P. Yeh, “Electromagnetic propagation in birefringent layered media”, J. Opt. Soc. Am. 69, 742–756 (1979). [NASA ADS] [CrossRef] [Google Scholar]
- H.-S. Kitzerow, and C. Bahr (eds.), Chirality in Liquid Crystals (Springer, New York, 2001). [CrossRef] [Google Scholar]
- A. H. Gevorgyan, “Optical properties of a stack of right- and lefthanded layers of a cholesteric liquid crystal”, Opt. Spectrosc. 113, 141–152 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- J. B. Pendry, “A chiral route to negative refraction”, Science 306, 1353–1355 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- Z. Li and M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission”, J. Opt. 15(2), 023001 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- M. Hentschel, M. Schoferling, T. Weiss, N. Liu, and H. Giessen, “Three dimensional chiral plasmonic oligomers”, Nano Lett. 12, 2542–2547 (2012). [Google Scholar]
- M. Thiel, H. Fischer, G. von Freymann, and M. Wegener, “Threedimensional chiral photonic superlattices”, Opt. Lett. 35, 166–168 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- M. Thiel, G. von Freymann, and M. Wegener, “Layer-by-layer threedimensional chiral photonic crystal”, Opt. Lett. 32, 2547–2549 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals”, Adv. Mater. 19, 207–210 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality”, Phys. Rev. B 79, 035407 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- S. Takahashi, A. Tandaechnurat, R. Igusa, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Giant optical rotation in a threedimensional semiconductor chiral photonic crystal”, Opt. Express 21, 29905–29913 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, “Observation of extraordinary optical activity in planar chiral photonic crystals”, Opt. Express 16, 7189–7196 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral metamaterials”, Appl. Phys. Lett. 86, 231905 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures”, Phys. Rev. Lett. 106, 057402 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- X. Zhu, Y. Zhang, D. Chandra, S.-C. Cheng, J. M. Kikkawa, and S. Yang, “Twodimensional photonic crystals with anisotropic unit cells imprinted from poly(dimethylsiloxane) membranes under elastic deformation”, Appl. Phys. Lett. 93, 161911 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- B. Rezaei and M. Kalafi, “Engineering absolute band gap in anisotropic hexagonal photonic crystals”, Opt. Commun. 266, 159–163 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, et al., “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching”, J. Vac. Sci. Technol. B 27, 568–572 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- I. H. Giden and H. Kurt, “Modified annular photonic crystals for enhanced band gap properties and iso-frequency contour engineering”, Appl. Optics 51, 1287–1296 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- K. M. Ho, C.T. Chan, and C.M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures”, Phys. Rev. Lett. 65, 3152 (1990). [NASA ADS] [CrossRef] [Google Scholar]
- N. Erim, I. H. Giden, M. Turduev, and H. Kurt, “Efficient mode-order conversion using a photonic crystal structure with low symmetry”, J. Opt. Soc. Am. B 30, 3086–3094 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Massachusetts, 2005). [Google Scholar]
- H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals”, Appl. Phys. Lett. 74, 1212–1214 (1999). [CrossRef] [Google Scholar]
- R. E. Hamam, M. Ibanescu, S.G. Johnson, J.D. Joannopoulos, and M. Soljacíc, “Broadband super-collimation in a hybrid photonic crystal structure”, Opt. Express 17, 8109–8118 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals”, Appl. Phys. Lett. 83, 3251–3253 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- I. H. Giden, M. Turduev, and H. Kurt, “Broadband super-collimation with low-symmetric photonic crystal”, Photonic. Nanostruct. 11, 132–138 (2013). [Google Scholar]
- M. Turduev, I. H. Giden, and H. Kurt, “Extraordinary wavelength dependence of self-collimation effect in photonic crystal with low structural symmetry”, Photonic. Nanostruct. 11, 241–252 (2013). [Google Scholar]
- H. Kurt, M. Turduev, and I. H. Giden, “Crescent shaped dielectric periodic structure for light manipulation”, Opt. Express 20, 7184–7194 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- M. Turduev, I. H. Giden, and H. Kurt, “Modified annular photonic crystals with enhanced dispersion relations: polarization insensitive self-collimation and nanophotonic wire waveguide designs”, J. Opt. Soc. Am. B 29, 1589–1598 (2012). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.