Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
Article Number 14040
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2014.14040
Published online 14 September 2014
  1. C. M. Vest, Holographic Interferometry (John Wiley & Sons, New York, 1979). [Google Scholar]
  2. K. J. Gasvik, Optical Metrology (Wiley, New York, 1987). [Google Scholar]
  3. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-Transform Method of Fringe-Pattern Analysis for Computer-Based Topography and Interferometry,” J. Opt. Soc. Am. A 72, 156–159 (1981). [Google Scholar]
  4. D. Malacara, M. Servín, and Z. Malacara, Interferogram Analysis for Optical Testing (Marcel Dekker, New York, 1998). [Google Scholar]
  5. J. Villa, I. de la Rosa, G. Miramontes, and J. A. Quiroga, “Phase recovery from a single fringe pattern using an orientational vector field regularized estimator,” J. Opt. Soc. Am. A, 22, 2766–2773 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  6. L. Guerriero, G. Nico, G. Pasquariello, and S. Stramaglia, “New regularization scheme for phase unwrapping,” Appl. Optics 37(14), 3053–3058 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  7. M. Rivera and J. L. Marroquin, “Half-quadratic cost functions for phase unwrapping,” Opt. Lett. 29(5), 504–506 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  8. B. Ströbel, “Processing of interferometric phase maps as complex-valued phasor images,” Appl. Optics 35, 2192–2198 (1996). [CrossRef] [Google Scholar]
  9. D.C. Ghiglia, and M.D. Pritt, Two-dimensional phase unwrapping: theory, algorithms, and software (Wiley, New York, 1998). [Google Scholar]
  10. B. R. Hunt, “Matrix formulation of the reconstruction of phase values from phase differences,” J. Opt. Soc. Am. 69(3), 393–399 (1979). [NASA ADS] [CrossRef] [Google Scholar]
  11. D. C. Ghiglia, and L. A. Romero, “Robust Two-Dimensional Weighted and Unweighted, Phase Unwrapping for Uses Fast Transform and Iterative Methods,” J. Opt. Soc. Am. A 11, 107–117 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  12. J. Villa Hernández, I. de la Rosa Vargas, and Enrique de la Rosa Miranda, “Radial Basis Functions for Phase Unwrapping,” Computación y Sistemas 14, 145–150 (2009). [Google Scholar]
  13. J. Arines, “Least-squares modal estimation of wrapped phases: Application to phase unwrapping,” Appl. Optics 42(17), 3373–3378 (2003). [CrossRef] [Google Scholar]
  14. G. H. Golub, and C. F. Van Loan, Matrix Computations (The John Hopkins University Press, Maryland, 1996). [Google Scholar]
  15. V. Lyuboshenko, H. Mâtre, and A. Maruani, “Least-Mean-Squares Phase Unwrapping by Use of an Incomplete Set of Residue Branch Cuts,” Appl. Optics 41, 2129–2148 (2002). [CrossRef] [Google Scholar]
  16. Y. Lu, X. Wang, and X. Zhang, “Weighted least-squares phase unwrapping algorithm based on derivative variance correlation map,” Optik 118(2), 62–66 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  17. S. B. Kim, and Y. S. Kim, “Least Squares Phase Unwrapping in Wavelet Domain,” IEE P.-Vis. Image Sign. 152(3), 261–267 (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.