Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 9, 2014
Article Number 14033
Number of page(s) 5
DOI https://doi.org/10.2971/jeos.2014.14033
Published online 19 August 2014
  1. E. Kretschmann, and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforschung A23, 2135–2136 (1968). [NASA ADS] [CrossRef] [Google Scholar]
  2. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968). [NASA ADS] [CrossRef] [Google Scholar]
  3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, New York, 1988). [CrossRef] [Google Scholar]
  4. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  5. R. C. Jorgenson, and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensor. Actuator. A-Phys. 12, 213–220 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  6. R. C. Jorgenson, and S. S. Yee, “Control of the dynamic range and sensitivity of a surface plasmon resonance based fiber optic sensor,” Sensor. Actuator. A-Phys. 43, 44–48 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  7. H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sensor. Actuator. B-Chem. 132, 26–33 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  8. Y. Zhao, Z.-Q. Deng, and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sensor. Actuator. B-Chem. 192, 229–233 (2014). [CrossRef] [Google Scholar]
  9. R. Slavík, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sensor. Actuator. B-Chem. 74, 106–111 (2001). [CrossRef] [Google Scholar]
  10. M. Mitsushio, K. Miyashita, and M. Higo, “Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al,” Sensor. Actuator. A-Phys. 125, 296–303 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  11. N. Rajan, S. Chand, and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber-optic sensor for bittering component,” Sensor. Actuator. B-Chem. 115, 344–348 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  12. N. Rajan, S. Chand, and B. D. Gupta, “Surface plasmon resonance based fiber-optic sensor for the detection of pesticide,” Sensor. Actuator. B-Chem. 123, 661–666 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  13. S. K. Srivastava, R. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol,” Sensor. Actuator. B-Chem. 153, 194–198 (2011). [CrossRef] [Google Scholar]
  14. P. Bhatia, and B. Gupta, “Surface-plasmon resonance-based fiber-optic refractive index sensor: sensitivity enhancement,” Appl. Optics 50, 2032–2036 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  15. D. Ciprian, and P. Hlubina, “Theoretical model of the influence of oxide overlayer thickness on the performance of a surface plasmon fibre-optic sensor,” Meas. Sci. Technol. 24, 025105 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  16. A. Hanning, J. Roeraade, J. J. Delrow, and R. C. Jorgenson, “Enhanced sensitivity of wavelength modulated surface plasmon resonance devices using dispersion from a dye solution,” Sensor. Actuator. B-Chem. 54, 25–36 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  17. R. K. Verma, and B. D. Gupta, “Theoretical modeling of a bidimensional U-shaped surface plasmon resonance based fiber optic sensor for sensitivity enhancement,” J. Phys. D Appl. Phys. 41, 095106 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  18. H.-Y. Lin, W.-H. Tsai, Y.-C. Tsao, and B.-C. Sheu, “Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light,” Appl. Optics 46, 800–806 (2007). [CrossRef] [Google Scholar]
  19. F. J. Bueno, Ó. Esteban, N. Díaz-Herrera, M.-C. Navarrete, and A. González-Cano, “Sensing properties of asymmetric doublelayer covered tapered fibers,” Appl. Optics 43, 1615–1620 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  20. Ó. Esteban, N. Díaz-Herrera, M.-C. Navarrete, and A. González-Cano, “Surface plasmon resonance sensors based on uniform-waist tapered fibers in a reflective configuration,” Appl. Optics 45, 7294–7298 (2006). [CrossRef] [Google Scholar]
  21. S. Lopez, I. del Villar, C. Ruiz Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on indium tin oxide coatings fabricated by sputtering,” Opt. Lett. 37, 28–30 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  22. M.-C. Navarrete, N. Díaz-Herrera, A. González-Cano, and Ó. Esteban, “A polarization-independent SPR fiber sensor,” Plasmonics 5, 7–12 (2010). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.