Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
|
|
---|---|---|
Article Number | 13070 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.2971/jeos.2013.13070 | |
Published online | 22 October 2013 |
- N. Hubin, and L. Noethe, “Active optics, adaptive optics, and laser guide stars,” Science 262, 1390–1394 (1993). [NASA ADS] [CrossRef] [Google Scholar]
- M. J. Booth, “Adaptive optics in microscopy,” Philos. T. R. Soc. A. 365, 2829–43 (2007). [CrossRef] [Google Scholar]
- M. R. Foreman, C. L. Giusca, P. Török, and R. K. Leach, “Phase-retrieved pupil function and coherent transfer function in confocal microscopy,” J. Microsc. 251, 99–107 (2013). [Google Scholar]
- A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405 (2002). [CrossRef] [Google Scholar]
- R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- S.-W. Bahk, E. Fess, B. E. Kruschwitz, and J. D. Zuegel, “A high-resolution, adaptive beam-shaping system for high-power lasers,” Opt. Express 18, 9151–63 (2010). [CrossRef] [Google Scholar]
- F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, et al., “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G–13 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- A. Haber, A. Polo, I. Maj, S. Pereira, H. Urbach, and M. Verhaegen, “Predictive control of thermally induced wavefront aberrations,” Opt. Express 21, 21530 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- J. W. Hardy, Adaptive optics for astronomical telescopes (Oxford University Press, New York, 1998). [Google Scholar]
- R. A. Gonsalves, “Phase Retrieval,” Proc. SPIE 528, 202–215 (1985). [NASA ADS] [CrossRef] [Google Scholar]
- J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27–29 (1978). [NASA ADS] [CrossRef] [Google Scholar]
- R. A. Gonsalves, “Phase retrieval by differential intensity measurements,” J. Opt. Soc. Am. A 4, 166–170 (1987). [CrossRef] [Google Scholar]
- J. R. Fienup, J. C. Marron, T. J. Schulz, and J. H. Seldin, “Hubble Space Telescope characterized by using phase-retrieval algorithms,” Appl. Optics 32, 1747–67 (1993). [NASA ADS] [CrossRef] [Google Scholar]
- D. J. Lee, M. C. Roggemann, and B. M. Welsh, “Cramer-Rao analysis of phase-diverse wave-front sensing,” J. Opt. Soc. Am. A 16, 1005–1015 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- O. E. Gawhary, A. Wiegmann, N. Kumar, S. F. Pereira, and H. Urbach, “Through-focus phase retrieval and its connection to the spatial correlation for propagating field,” Opt. Express 21, 1662–1669 (2013). [Google Scholar]
- A. Polo, S. F. Pereira, and H. Urbach, “Theoretical analysis for best defocus measurement plane for robust phase retrieval,” Opt. Lett., 38 812 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- C. U. Keller, V. Korkiakoski, N. Doelman, R. Fraanje, R. Andrei, and M. Verhaegen, “Extremely fast focal-plane wavefront sensing for extreme adaptive optics,” Proc. SPIE 8447, 844721–844721–10 (2012). [NASA ADS] [CrossRef] [Google Scholar]
- C. S. Smith, R. Marinic, A. J. D. Dekker, M. Verhaegen, V. Korkiakoski, C. U. Keller, and N. Doelman, “Iterative linear focalplane wavefront correction,” J. Opt. Soc. Am. Aosa 30, 2002–2011 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning control,” IEEE Contr. Syst. Mag. 26, 96–114 (2006). [CrossRef] [Google Scholar]
- D. Malacara and W. T. Welford, Optical shop testing (John Wiley Sons, Hoboken, 2006). [Google Scholar]
- T. I. Kuznetsova, “On the phase retrieval problem in optics,” Sov. Phys. Uspekhi 31, 364–371 (1988). [NASA ADS] [CrossRef] [Google Scholar]
- W. J. Wild, “Linear phase retrieval for wave-front sensing,” Opt. Lett. 23, 573–5 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- J. Braat, P. Dirksen, and A. J. E. M. Janssen, “Assessment of an extended Nijboer-Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19, 858–870 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, Englewood, 2005). [Google Scholar]
- M. Verhaegen and V. Verdult, Filtering and system identification: a least square approach (Cambridge University Press, Cambridge, 2007). [CrossRef] [Google Scholar]
- M. Born, and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Cambridge University Press, Cambridge, 1999). [CrossRef] [Google Scholar]
- Adaptica Srl, Saturn user manual, http://www.adaptica.com/site/en/pages/saturn. [Google Scholar]
- A. Polo, A. Haber, S. F. Pereira, M. Verhaegen, and H. P. Urbach, “An innovative and efficient method to control the shape of push-pull membrane deformable mirror,” Opt. Express 20, 27922–27932 (2012). [CrossRef] [Google Scholar]
- A. Haber, A. Polo, C. S. Smith, S. F. Pereira, P. Urbach, and M. Verhaegen, “Iterative learning control of a membrane deformable mirror for optimal wavefront correction,” Appl. Optics 52, 2363 (2013). [NASA ADS] [CrossRef] [Google Scholar]
- A. Haber, A. Polo, S. Ravensbergen, H. P. Urbach, and M. Verhaegen, “Identification of a dynamical model of a thermally actuated deformable mirror,” Opt. Lett. 38, 3061–3064 (2013). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.