Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
Article Number 13052
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2013.13052
Published online 14 August 2013
  1. G. Leuchs, and M. Sondermann, “Light-matter interaction in free space,” J. Mod. Opt. 60, 36–42 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  2. S. A. Aljunid, M. K. Tey, B. Chng, T. Liew, G. Maslennikov, V. Scarani, and C. Kurtsiefer, “Phase shift of a weak coherent beam induced by a single atom,” Phys. Rev. Lett. 103, 153601 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  3. M. Pototschnig, Y. Chassagneux, J. Hwang, G. Zumofen, A. Renn, and V. Sandoghdar, “Controlling the phase of a light beam with a single molecule,” Phys. Rev. Lett. 107, 063001 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  4. G. Hétet, L. Slodička, N. Röck, and R. Blatt, “Faraday rotation of a tightly focussed beam from a single trapped atom,” arXiv:1212.0810 [physics.atom-ph] (2012). [Google Scholar]
  5. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  6. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  7. A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A 84, 011803 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  8. S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  9. M. Sondermann, R. Maiwald, H. Konermann, N. Lindlein, U. Peschel, and G. Leuchs, “Design of a mode converter for efficient light-atom coupling in free space,” Appl. Phys. B 89, 489–492 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  10. N. Lindlein, R. Maiwald, H. Konermann, M. Sondermann, U. Peschel, and G. Leuchs, “A new 4π-geometry optimized for focusing onto an atom with a dipole-like radiation pattern,” Laser Phys. 17, 927–934 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  11. G. Zumofen, N. M. Mojarad, V. Sandoghdar, and M. Agio, “Perfect reflection of light by an oscillating dipole,” Phys. Rev. Lett. 101, 180404 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  12. M. K. Tey, G. Maslennikov, T. C. H. Liew, S. A. Aljunid, F. Huber, B. Chng, Z. Chen, V. Scarani, and C. Kurtsiefer, “Interfacing light and single atoms with a lens,” New J. Phys. 11, 043011 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  13. G. Zumofen, N. M. Mojarad, and M. Agio, “Light scattering by an oscillating dipole in a focused beam,” Nuovo Cimento C 31, 475–485 (2009). [Google Scholar]
  14. S. J. van Enk, “Atoms, dipole waves, and strongly focused light beams,” Phys. Rev. A 69, 043813 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  15. K. Koshino, “Multiphoton wave function after Kerr interaction,” Phys. Rev. A 78, 023820 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  16. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997). [CrossRef] [Google Scholar]
  17. M. Sondermann, N. Lindlein, and G. Leuchs, “Maximizing the electric field strength in the foci of high numerical aperture optics,” arXiv:0811.2098 [physics.optics] (2008). [Google Scholar]
  18. Erik W. Streed, Andreas Jechow, Benjamin G. Norton, and David Kielpinski, “Absorption imaging of a single atom,” Nat. Commun. 3, 933 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  19. A. Jechow, B. G. Norton, S. Händel, V. Blūms, E. W. Streed, and D. Kielpinski, “Controllable optical phase shift over one radian from a single isolated atom,” Phys. Rev. Lett. 110, 113605 (2013). [NASA ADS] [CrossRef] [Google Scholar]
  20. T. Tyc, “Gouy phase for full-aperture spherical and cylindrical waves,” Opt. Lett. 37, 924–926 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  21. G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008). [CrossRef] [Google Scholar]
  22. D. Meschede, Optik, Licht und Laser (Teubner, Wiesbaden, 2005). [CrossRef] [Google Scholar]
  23. A. Golla, B. Chalopin, M. Bader, I. Harder, K. Mantel, R. Maiwald, N. Lindlein, M. Sondermann, and G. Leuchs, “Generation of a wave packet tailored to efficient free space excitation of a single atom,” Eur. Phys. J. D 66, 190 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  24. G. Leuchs, K. Mantel, A. Berger, H. Konermann, M. Sondermann, U. Peschel, N. Lindlein, and J. Schwider, “Interferometric null test of a deep parabolic reflector generating a Hertzian dipole field,” Appl. Optics 47, 5570–5584 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  25. P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964). [NASA ADS] [CrossRef] [Google Scholar]
  26. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964). [NASA ADS] [CrossRef] [Google Scholar]
  27. R. W. Boyd, Nonlinear optics (Academic Press, San Diego, 1992). [Google Scholar]
  28. L. Hilico, C. Fabre, S. Reynaud, and E. Giacobino, “Linear input-output method for quantum fluctuations in optical bistability with two-level atoms,” Phys. Rev. A 46, 4397–4405 (1992). [NASA ADS] [CrossRef] [Google Scholar]
  29. P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.