Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
Article Number 13047
Number of page(s) 7
DOI https://doi.org/10.2971/jeos.2013.13047
Published online 14 July 2013
  1. N. Bertaux, Y. Frauel, P. Réfrégier, and B. Javidi, “Speckle removal using a maximum-likelihood technique with isoline gray-level regularization,” J. Opt. Soc. Am. A 21(12), 2283–2291 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  2. J. E. Besag, “Spatial interaction and the statistical analysis of lattice systems,” J. Royal Stat. Soc. Ser. B B-36, 192–236 (1974). [CrossRef] [Google Scholar]
  3. J. E. Besag, “On the statistical analysis of dirty pictures”, J. Royal Stat. Soc. Ser. B B-48, 259–302 (1986). [CrossRef] [Google Scholar]
  4. C. Bouman, and K. Sauer, “A generalizaed Gaussian image model for edge-preserving MAP estimation,” IEEE T. Nucl. Sci. 99(4), 1144–1152 (1992). [NASA ADS] [Google Scholar]
  5. K. Champagnat, and J. Idier, “A conection between half-quadratic criteria and EM algorithms,” IEEE Signal Proc. Let. 11(9), 709–712 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  6. S. Geman, and C. Geman, “Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images,” IEEE T. Pattern Anal. 6, 721–741 (1984). [CrossRef] [Google Scholar]
  7. K. Sauer, and C. Bouman, “Bayesian estimation of transmission tomograms using segmentation based optimization,” IEEE T. Image Process. 2(3), 296–310 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  8. J. I. De la Rosa, and G. Fleury, “On the kernel selection for minimum-entropy estimation,” in Proceedings of the IEEE Instrumentation and Measurement Technology Conference, 1205–12010 (IEEE, Anchorage, 2002). [Google Scholar]
  9. J. I. De la Rosa, G. Fleury, and M.-E. Davoust, “Minimum-entropy, pdf approximation and kernel selection for measurement estimation,” IEEE T. Instrum. Meas. 52(4), 1009–1020 (2003). [Google Scholar]
  10. J. I. De la Rosa, “Convergence of minimum-entropy robust estimators: Applications in DSP and instrumentation,” in Proceedings of the XIV International Conference on Electronics, Communications, and Computers - CONIELECOMP’04, 98–103 (IEEE, Veracruz, 2004). [Google Scholar]
  11. P. Milanfar “A Tour of Modern Image Filtering,” IEEE Signal Proc. Mag. 30(1), 106–128, Jan. (2013). [NASA ADS] [CrossRef] [Google Scholar]
  12. H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing and reconstruction,” IEEE T. Image Process. 16(2), 349–366, Feb. (2007). [NASA ADS] [CrossRef] [Google Scholar]
  13. Ö. EȈgecioȈglu, and A. Srinivasan, “Efficent non-parametric density estimation on the sphere with applications in fluid mechanics,” SIAM J. Sci. Comput. 22(1), 152–176 (2000). [CrossRef] [Google Scholar]
  14. G. P. Terrell, “The maximal smoothing principle in density estimation,” J. Am. Stat. Assoc. 85, 470–477 (1990). [CrossRef] [Google Scholar]
  15. G. P. Terrell, and D. W. Scott, “Oversmoothed nonparametric density estimation,” J. Am. Stat. Assoc. 80, 209–214 (1985). [CrossRef] [Google Scholar]
  16. L. Pronzato, and E. Thierry, “A minimum-entropy estimator for regression problems with unknown distribution of observation errors,” in textslMaxEnt 2000, Eds. A. Mohammad-Djafari, 169–180 (American Institute of Physics, College Park, 2000). [Google Scholar]
  17. L. Pronzato, and E. Thierry, “Entropy minimization of parameter estimator with unknown distribution of observation errors,” in Proceedings of the IEEE International Conference in Acoustics, Speech and Signal Processing, 3993–3996 (IEEE, Salt Lake City, 2001). [Google Scholar]
  18. E. Masry, “Probability density estimation from sampled data,” IEEE T. Inform. Theory IT-29(5), 697–709 (1983). [Google Scholar]
  19. L. Devroye, “A note on the usefulness of superkernels in density estimation,” Ann. Stat. 20, 2037–2056 (1992). [CrossRef] [Google Scholar]
  20. L. Devroye, “The double kernel method in density estimation,” Ann. I. H. Poincare 25, 533–580 (1989). [Google Scholar]
  21. L. Devroye, and A. Krzyżak, “On the Hilbert kernel density estimate,” Stat. Probabil. Lett. 44, 299–308 (1999). [CrossRef] [Google Scholar]
  22. L. Devroye, “Universal smoothing factor selection in density estimation: Theory and practice,” Test 6, 223–320 (1997). [CrossRef] [Google Scholar]
  23. A. Berlinet, and L. Devroye, “A comparison of kernel density estimates,” Publications de l’Intitut de Statistique de l’Université de Paris 38(3), 3–59 (1994). [Google Scholar]
  24. C. M. Loader, “Bandwidth selection: classical or plug-in?,” Ann. Stat. 27(3), 415–438 (1999). [CrossRef] [Google Scholar]
  25. E. Wolsztynski, E. Thierry, and L. Pronzato, “Minimum entropy estimation in semi parametric models,” Signal Process. 85, 937–949 (2005). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.