Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 8, 2013
Article Number 13013
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2013.13013
Published online 09 February 2013
  1. L. Tancevski, and I. Andonovic, “Wavelength Hopping Time Spreading Code Division Multiple Access Systems,” Electron. Lett. 30, 1388–1390 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  2. P. R. Prucnal, Optical Code Division Multiple Access: Fundamental and Applications (Taylor and Francis, Boca Raton, 2004). [Google Scholar]
  3. Y.-K. Huang, V. Baby, I. Glesk, C.-S. Brès, C. M. Greiner, D. Iazikov, T. W. Mossberg, and P. R. Prucnal, “Novel multicode-processing platform for wavelength-hopping time-spreading Optical CDMA: A path to device miniaturization and enhanced network functionality,” IEEE J. Sel. Top. Quantum Electron. 13, 1471–1479 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  4. V. Jyoti, and R. S. Kaler, “Design and implementation of 2-dimensional wavelength/time codes for OCDMA,” Int. J. Light Electron Opt. 122, 851–857 (2010). [Google Scholar]
  5. V. Baby, C.-S. Brès, L. Xu, I. Glesk, and P. R. Prucnal, “Demonstration of differentiated service provisioning with 4-node 253 Gchip/s fast frequency hopping time spreading OCDMA,” Electron. Lett. 40, 755–756 (2006). [Google Scholar]
  6. N. T. Dang, A. T. Pham, and Z. Cheng, “Impact of GVD on the performance of 2-D WH/TS OCDMA system using heterodyne detection receiver,” IEICE Trans. Fund. E 92-A, 1182–1191 (2009). [Google Scholar]
  7. L. Tancevski, and L. A. Rusch, “Impact of the beat noise on the performance of 2D optical CDMA System,” IEEE Commun. Lett. 4, 264–266 (2000). [CrossRef] [Google Scholar]
  8. T. V. Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Kuppers, “Optical clock recovery method: review,” Elsevier Opt. Fiber Technol. 15, 363–372 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  9. K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, “30 Gb/s all optical clock recovery circuit,” IEEE Photon. Technol. Lett. 12, 705–707 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  10. Y. Su, L. Wang, A. Agrawal, and P. Kumar, “Wavelength-tunable all-optical clock recovery using a fiber-optic parametric oscillator,” Opt. Commun. 184, 151–156 (2000). [CrossRef] [Google Scholar]
  11. L. F. K. Lui, A. Zhang, P. K. A. Wai, H. Y. Tam, and M. S. Demokan, “40 Gb/s All-optical clock recovery based on an optical parametric oscillator with photonic crystal fiber,” in Proceedings to Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science, 1–2 (CLEO/QELS, California, 2008). [Google Scholar]
  12. S. Zhang, F. Gomez-Agis, Y. Liu, N. Calabretta, E. Tangdiongga, and H. J. S. Dorren, “Fast-synchronization and low-timing jitter self-clocking concept for 160 Gbit/s optical time-division multiplexing transmissions,” Opt. Lett. 35, 37–39 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  13. Y. Deng, K. Kravtsov, M. P. Fok, and P. R. Prucnal, K. Sasaki, G. C. Gupta, and S. Kobayashi, “All-optical asynchronous detection for a compact integrable incoherent optical CDMA system,” J. Light. Technol. 27, 5370–5375 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  14. J. Faucher, S. Ayotte, L. A. Rusch, S. LaRochelle, and D. Plant, “Experimental BER performance of 2-D-t OCDMA with recovered clock,” Electron. Lett. 41, 713–715 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  15. K. Kravtsov, Y. Deng, and P. R. Prucnal, “Self-clocked alloptical add/drop multiplexer for asynchronous CDMA ring networks,” IEEE J. Quantum Electron. 45, 396–401 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  16. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  17. G.-C. Yang, and W. C. Kwong, Prime Codes with Applications to CDMA Optical and Wireless Networks (Artech House, Norwood, 2002). [Google Scholar]
  18. C.-S. Brès, V. Baby, I. Glesk, L. Xu, D. Rand, and P. R. Prucnal, “Scalability of Frequency-Hopping Time Spreading OCDMA Code Matrix,” in Proceedings to Conference on Laser and Electro-Optics 2004, (CLEO, California, 2004). [Google Scholar]
  19. I. Glesk, V. Baby, C.-S. Brès, Y.-K. Huang, and P. R. Prucnal, “Performance enhancement of optical CDMA systems using ultrafast all-optical sampling,” in Proceedings to IEEE Conference on Avionics Fiber-Optics and Photonics, 2000, 58–59 (AVFOP, Minneapolis, 2005). [Google Scholar]
  20. Y.-K. Huang, K. Kravtsov, I. Glesk, P. R. Prucnal, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Integration of dual-code optical CDMA encoder and decoder by holographic Bragg reflectors,” in Proceedings to Optical Fiber Communication and the National Fiber Optic Engineers Conference, 2007, 1–3 (OFC/NFOEC, Anaheim, 2007). [Google Scholar]
  21. Y. Zhang, H. Chen, Z. Si, H. Ji, and S. Xie, “Design of FBG en/decoders in coherent 2-D time-wavelength OCDMA systems,” IEEE Photon. Technol. Lett. 20, 891–893 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  22. T. B. Osadola, S. K. Idris, I. Glesk, K. Sasaki, G. C. Gupta, “In Situ Method for Power Re-Equalization of Wavelength Pulses Inside of OCDMA Codes,” IEEE J. Quantum Electron. 47, 1053–1058 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  23. I. Andonovic, L. Bazgaloski, M. Shabeer, and L. Tancevski, “Incoherent all optical code recognition with balanced detection,” J. Light. Technol. 12, 1073–1080 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  24. I. Glesk, P. R. Prucnal, and I. Andonovic, “Incoherent Ultrafast OCDMA Receiver Design with 2 ps All-optical Time Gate to Suppress Multiple-Access Interference,” IEEE J. Sel. Top. Quantum Electron. 14, 861–867 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  25. S. Nakamura, Y. Ueno, and K. Tajima, “Ultrahigh-speed optical signal processing with symmetric-Mach-Zehnder-type all-optical switches,” in Proceedings of All-Optical Networking: Existing and Emerging Architecture and Applications/Dynamic Enablers of Next-Generation Optical Communications Systems/Fast Optical Processing in Optical Transmission/VCSEL 2002, TuK4-27–TuK-28 (IEEE/LEOSST, Quebec, 2002). [Google Scholar]
  26. P. Bakopoulos, D. Tsiokos, O. Zouraraki, H. Avramopoulos, G. Maxwell, and A. Poustie, “Compact all-optical packet clock and data recovery circuit using generic integrated MZI switches,” Opt. Express 13, 6401–6406 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  27. I. Glesk, P. Bock, P. Cheben, J. Schmid, J. Lapointe, and S. Janz, “All-optical switching using nonlinear subwavelength Mach-Zehnder on silicon,” Opt. Express 19, 14031–14039 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  28. H. L. Minh, Z. Gbassemlooy, and W. P. Ng, “Ultrafast All-optical Self Clock Extraction Based on Two Inline Symmetric Mach-Zehnder Switches,” in Proceedings of International Conference of Transparent Optical Networks 2006, 64–67 (ICTON, Nottingham, 2006). [CrossRef] [Google Scholar]
  29. S. Idris, T. Osadola, and I. Glesk, “OCDMA receiver with built-in all-optical clock recovery,” in Proceedings of European Optical Society Annual Meeting 2012, (EOSAM, Aberdeen, 2012). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.