Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 7, 2012
|
|
---|---|---|
Article Number | 12047 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.2971/jeos.2012.12047 | |
Published online | 17 November 2012 |
- P. Matthews, and P. Jezzard, “Functional magnetic resonance imaging,” J. Neurol. Neurosur. Ps. 75, 6 (2004). [Google Scholar]
- S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” P. Natl. A. Sci. 87, 9868–9872 (1990). [CrossRef] [Google Scholar]
- E. Leniger-Follert, and D. W. Lübbers, “Behavior of microflow and local PO2 of the brain cortex during and after direct electrical stimulation. A contribution to the problem of metabolic regulation of microcirculation in the brain,” Pflug. Arch. 366, 39–44 (1976). [CrossRef] [Google Scholar]
- G. Strangman, D. Boas, and J. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiat. 52, 679–693 (2002). [CrossRef] [Google Scholar]
- D. Boas, T. Gaudette, G. Strangman, X. Cheng, J. Marota, and J. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13, 76–90 (2001). [CrossRef] [Google Scholar]
- R. B. Buxton, K. Uludag, D. J. Dubowitz, and T. T. Liu, “Modeling the hemodynamic response to brain activation,” Neuroimage 23 Suppl. 1, 220–233 (2004). [Google Scholar]
- G. Strangman, J. P. Culver, J. H. Thompson, and D. A. I. S. J. P. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage 17, 719–731 (2002). [CrossRef] [Google Scholar]
- P. Bandettini, and R. Cox, “Event related fMRI contrast when using constant interstimulus interval: Theory and experiment,” Magnet. Reson. Med. 43, 540–548 (2000). [CrossRef] [Google Scholar]
- B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magnet. Reson. Med. 34, 537–541 (1995). [CrossRef] [Google Scholar]
- K. Friston, C. Frith, P. Liddle, and R. Frackowiak, “Functional connectivity: The principal component analysis of large (PET) data sets,” J. Cerebr. Blood F. Met. 13, 5–14 (1993). [CrossRef] [Google Scholar]
- M. Hampson, B. Peterson, P. Skudlarski, J. Gatenby, and J. Gore, “Detection of functional connectivity using temporal correlations in MR images,” Hum. Brain Mapp. 15, 247–262 (2002). [CrossRef] [Google Scholar]
- M. Lowe, M. Dzemidzic, J. Lurito, V. Mathews, and M. Phillips, “Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections,” Neuroimage 12, 582–587 (2000). [CrossRef] [Google Scholar]
- D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23 Suppl. 1, 275–288 (2004). [Google Scholar]
- H. Niu, S. Khadka, F. Tian, Z. J. Lin, C. Lu, C. Zhu, and H. Liu, “Resting-state functional connectivity assessed with two diffuse optical tomographic systems,” J. Biomed. Opt. 16, 046006 (2011). [CrossRef] [Google Scholar]
- B. White, A. Snyder, A. Cohen, S. Petersen, M. Raichle, B. Schlaggar, and J. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47, 148–156 (2009). [CrossRef] [Google Scholar]
- S. Sasai, F. Homae, H. Watanabe, and G. Taga, “Frequency-specific functional connectivity in the brain during resting state revealed by NIRS,” Neuroimage 56, 252–257 (2011). [CrossRef] [Google Scholar]
- M. Franceschini, D. Joseph, T. Huppert, S. Diamond, and D. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11, 054007 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” P. Natl. A. Sci. 104, 12169–12174 (2007). [CrossRef] [Google Scholar]
- D. Delpy, and M. Cope, “Quantification in tissue near-infrared spectroscopy,” Philos. T. R. Soc. B 352, 649 (1997). [Google Scholar]
- A. Gibson, J. Hebden, and S. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1 (2005). [CrossRef] [Google Scholar]
- T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Optics 48, D280–D298 (2009). [CrossRef] [Google Scholar]
- M. Franceschini, S. Fantini, J. Thompson, J. Culver, and D. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40, 548–560 (2003). [Google Scholar]
- H. H. Jasper, “The ten-twenty electrode system of the International Federation,” Electroen. Clin. Neuro. 10, 371–375 (1958). [Google Scholar]
- D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, “Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans,” Opt. Lett. 29, 1506–1508 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- P. Nunez, R. Srinivasan, A. Westdorp, R. Wijesinghe, D. Tucker, R. Silberstein, and P. Cadusch, “EEG coherency:: I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales,” Electroen. Clin. Neuro. 103, 499–515 (1997). [CrossRef] [Google Scholar]
- P. Welch, “The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms,” IEEE Trans. Audio 15, 70–73 (1967). [CrossRef] [Google Scholar]
- D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Proc. Mag. 18, 57–75 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40, 548–560 (2003). [Google Scholar]
- F. Sun, L. Miller, and M. D’Esposito, “Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data,” Neuroimage 21, 647–658 (2004). [CrossRef] [Google Scholar]
- J. Xiong, L. M. Parsons, J. H. Gao, and P. T. Fox, “Interregional connectivity to primary motor cortex revealed using MRI resting state images,” Hum. Brain Mapp. 8, 151–156 (1999). [CrossRef] [Google Scholar]
- M. A. Franceschini, and D. A. Boas, “Noninvasive measurement of neuronal activity with near-infrared optical imaging,” Neuroimage 21, 372–386 (2004). [CrossRef] [Google Scholar]
- E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. T. R. Soc. B 352, 727–735 (1997). [Google Scholar]
- G. Gratton, M. Fabiani, P. M. Corballis, D. C. Hood, M. R. Goodman-Wood, J. Hirsch, K. Kim, D. Friedman, and E. Gratton, “Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and MRI,” Neuroimage 6, 168–180 (1977). [Google Scholar]
- G. Morren, U. Wolf, P. Lemmerling, M. Wolf, J. H. Choi, E. Gratton, L. De Lathauwer, and S. Van Huffel, “Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis,” Med. Biol. Eng. Comput. 42, 92–99 (2004). [CrossRef] [Google Scholar]
- H. Radhakrishnan, W. Vanduffel, H. P. Deng, L. Ekstrom, D. A. Boas, and M. A. Franceschini, “Fast optical signal not detected in awake behaving monkeys,” Neuroimage 45, 410–419 (2009). [CrossRef] [Google Scholar]
- X. C. Yao, and J. S. George, “Near-infrared imaging of fast intrinsic optical responses in visible light-activated amphibian retina,” J. Biomed. Opt. 11, 064030 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- A. V. Medvedev, J. M. Kainerstorfer, S. V. Borisov, A. H. Gandjbakhche, and J. Vanmeter, “”Seeing” electroencephalogram through the skull: imaging prefrontal cortex with fast optical signal,” J. Biomed. Opt. 15, 061702 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- J. Lee, and S. J. Kim, “Spectrum measurement of fast optical signal of neural activity in brain tissue and its theoretical origin,” Neuroimage 51, 713–722 (2010). [CrossRef] [Google Scholar]
- G.-L. Laio, and G. Palmer, “The reduced minus oxidized difference spectra of cytochromes a and a3,” Biochem. Biophys. Acta 1274, 109–111 (1996). [Google Scholar]
- R. Salvador, J. Suckling, C. Schwarzbauer, and E. Bullmore, “Undirected graphs of frequency-dependent functional connectivity in whole brain networks,” Philos. T. R. Soc. B 360, 937–946 (2005). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.