Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 7, 2012
|
|
---|---|---|
Article Number | 12040 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.2971/jeos.2012.12040 | |
Published online | 28 September 2012 |
- I. U. G. Gogotsi, Nanomaterials handbook (CRC/Taylor & Francis, Boca Raton, 2006). [CrossRef] [Google Scholar]
- V. K. Sharma, R. A. Yngard, and Y. Lin, “Silver nanoparticles: Green synthesis and their antimicrobial activities,” Adv. Colloid. Interfac. 145, 83–96 (2009). [CrossRef] [Google Scholar]
- Z. S. Pillai, and P. V. Kamat, “What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method?,” J. Phys. Chem. B 108, 945–951 (2003). [Google Scholar]
- Y. Sun, and Y. Xia, “Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-Seeding, Polyol Process,” Adv. Mater. 14, 833–837 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- P. K. Khanna, N. Singh, S. Charan, V. V. V. S. Subbarao, R. Gokhale, and U. P. Mulik, “Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method,” Mater. Chem. Phys. 93, 117–121 (2005). [CrossRef] [Google Scholar]
- Z. H. Mbhele, M. G. Salemane, C. G. C. E. van Sittert, J. M. Nedeljković, V. Djoković, and A. S. Luyt, “Fabrication and Characterization of Silver-Polyvinyl Alcohol Nanocomposites,” Chem. Mater. 15, 5019–5024 (2003). [CrossRef] [Google Scholar]
- R. Zeng, M. Z. Rong, M. Q. Zhang, H. C. Liang, and H. M. Zeng, “Laser ablation of polymer-based silver nanocomposites,” Appl. Surf. Sci. 187, 239–247 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- Z. Zhang, and M. Han, “One-step preparation of size-selected and well-dispersed silver nanocrystals in polyacrylonitrile by simultaneous reduction and polymerization,” J. Mater. Chem. 13, 641–643 (2003). [CrossRef] [Google Scholar]
- H. Liu, X. Ge, Y. Zhu, X. Xu, Z. Zhang, and M. Zhang, “Synthesis and characterization of polyacrylamide-nickel amorphous nanocomposites by gamma-irradiation,” Mater. Lett. 46, 205–208 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- A. V. Firth, S. W. Haggata, P. K. Khanna, S. J. Williams, J. W. Allen, S. W. Magennis, I. D. W. Samuel, and D. J. Cole-Hamilton, “Production and luminescent properties of CdSe and CdS nanoparticle-polymer composites,” J. Lumin. 109, 163–172 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- J. Bai, Y. Li, L. Sun, C. Zhang, and Q. Yang, “Bicomponent AgCl/PVP nanofibre fabricated by electrospinning with gel-sol method,” B. Mater. Sci. 32, 161–164 (2009). [CrossRef] [Google Scholar]
- D. F. Eaton, “Nonlinear Optical Materials,” Science 253, 281–287 (1991). [NASA ADS] [CrossRef] [Google Scholar]
- R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D Appl. Phys. 34, 1602 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- H. Fei, Z. Wei, Q. Yang, Y. Che, Y. Shen, X. Fu, and L. Qiu, “Low-power phase conjugation in push pull azobenzene compounds,” Opt. Lett. 20, 1518–1520 (1995). [NASA ADS] [CrossRef] [Google Scholar]
- M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Elect. 26, 760–769 (1990). [NASA ADS] [CrossRef] [Google Scholar]
- R. L. Sutherland, “Effects of multiple internal sample reflections on nonlinear refractive Z-scan measurements,” Appl. Optics 33, 5576–5584 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- T. Jia, T. He, P. Li, Y. Mo, and Y. Cui, “A study of the thermal-induced nonlinearity of Au and Ag colloids prepared by the chemical reaction method,” Opt. Laser Technol. 40, 936–940 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- K. Sendhil, C. Vijayan, and M. P. Kothiyal, “Low-threshold optical power limiting of cw laser illumination based on nonlinear refraction in zinc tetraphenyl porphyrin,” Opt. Laser Technol. 38, 512–515 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- J. Wang, and W. J. Blau, “Inorganic and hybrid nanostructures for optical limiting,” J. Opt. A-Pure Appl. Op. 11, 024001 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- Q. W. Song, C. Zhang, R. Gross, and R. Birge, “Optical limiting by chemically enhanced bacteriorhodopsin films,” Opt. Lett. 18, 775–777 (1993). [NASA ADS] [CrossRef] [Google Scholar]
- H.M. Zidan, “Effect of AgNO3 filling and UV-irradiation on the structure and morphology of PVA films,” Polym. Test. 18, 449–461 (1999). [CrossRef] [Google Scholar]
- R. A. Ganeev, M. Baba, A. I. Ryasnyansky, M. Suzuki, and H. Kuroda, “Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids,” Opt. Commun. 240, 437–448 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- G. V. Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzo, and F. Priolo, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607–4610 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- H. Manaa, A. Tuhl, J. Samuel, A. Al-Mulla, N. A. Al-Awadi, and S. Makhseed, “Photophysical and nonlinear optical properties of zincphthalocyanines with peripheral substitutions,” Opt. Commun. 284, 450–454 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- Q. W. Song, C. Zhang, R. B. Gross, and R. R. Birge, “The intensity-dependent refractive index of chemically enhanced bacteriorhodopsin,” Opt. Commun. 112, 296–301 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- S. J. Mathews, S. C. Kumar, L. Giribabu, and S. V. Rao, “Large third-order optical nonlinearity and optical limiting in symmetric and unsymmetrical phthalocyanines studied using Z-scan,” Opt. Commun. 280, 206–212 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- T. He, and C. Wang, “The study on the nonlinear optical response of Sudan I,” Opt. Commun. 281, 4121–4125 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- E. Shahriari, W. M. Mat Yunus, K. Naghavi, and Z. A. Talib, “Effect of concentration and particle size on nonlinearity of Au nano-fluid prepared by g (60Co) radiation,” Opt. Commun. 283, 1929–1932 (2010). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.