Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 7, 2012
Article Number 12038
Number of page(s) 5
DOI https://doi.org/10.2971/jeos.2012.12038
Published online 15 September 2012
  1. J. Homola, “Present and future of surface plasmon resonance biosensor,” Anal. Bioanal. Chem. 377, 528–539 (2003). [CrossRef] [Google Scholar]
  2. C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sensors Actuator. 3, 79–88 (1982). [CrossRef] [Google Scholar]
  3. K. Matsubara, S. Kawata, and S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Optics 27, 1160–1163 (1988). [NASA ADS] [CrossRef] [Google Scholar]
  4. L. M. Zhang, and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 23, 1469–1470 (1988). [NASA ADS] [CrossRef] [Google Scholar]
  5. P. Markowicz, W. Law, A. Baev, P. Prasad, S. Patskovsky, and A. Kabashin, “Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing,” Opt. Express 15, 1745–1754 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  6. A. Kruchinin, and Y. Vlasov, “Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA probe biosensor,” Sensor Actuat. B - Chem. 30, 77–80 (1996). [CrossRef] [Google Scholar]
  7. K. Wang, Z. Zheng, Y. Su, Z. Wang, L. Song, and J. Zhu, “Hybrid differential interrogation method for sensitive surface plasmon resonance measurement enabled by electro-optically tunable SPR sensor,” Opt. Express 17, 4468–4478 (2009). [CrossRef] [Google Scholar]
  8. C. E. H. Berger, T. A. M. Baumer, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance multisensing,” Anal. Chem. 70, 703–706 (1998). [Google Scholar]
  9. S. R. Karlsen, K. S. Johnston, R. C. Jorgenson, and S. S. Yee, “Simultaneous determination of refractive index and absorbance spectra of chemical samples using surface plasmon resonance,” Sensor Actuat. B - Chem. 25, 747–749 (1994). [Google Scholar]
  10. R. Kasztelanic, “Surface plasmon resonance sensors - novel architecture and improvements,” Opt. Appl. 41, 145–155 (2011). [Google Scholar]
  11. R. Buczyński, D. Pysz, R. Ste¸pień, A. J. Waddie, I. Kujawa, R. Kasztelanic, M. Franczyk, and M. R. Taghizadeh, “Supercontinuum generation in photonic crystal fibers with nanoporous core made of soft glass,” Laser Phys. Lett. 8, 6, 443–448 (2011). [CrossRef] [Google Scholar]
  12. M. Piliarik, and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?,” Opt. Express 17, 16505–16517 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  13. A. Naimushin, S. Soelberg, D. Bartholomew, J. Elkind, and C. Furlong, “A portable surface plasmon resonance sensor system with temperature regulation,” Sensor Actuat. B - Chem. 96, 253–260 (2003). [CrossRef] [Google Scholar]
  14. M. Kufner, S. Kufner, Micro-optics and lithography (VUB press, Brussels, 1997). [Google Scholar]
  15. R. Kasztelanic, “Multilevel structures in deep proton lithography,” P. Soc. Photo-Opt. Ins. 07(1), 013006 (2008). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.