Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 7, 2012
|
|
---|---|---|
Article Number | 12036 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.2971/jeos.2012.12036 | |
Published online | 06 September 2012 |
- P. Murdin (ed.), Active Optics (Institute of Physics Publishing, Bristol, 2000). [Google Scholar]
- R. N. Wilson, F. Franza, and L. Noethe, “Active optics. I. A system for optimizing the optical quality and reducing the costs of large telescopes.,” J. Mod. Opt. 34, 485–509 (1987). [NASA ADS] [CrossRef] [Google Scholar]
- E.-D. Knohl, “VLT primary support system,” Proc. SPIE 2199, 271–283 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- M. Ferrari, “Development of a variable curvature mirror for the delay lines of the VLT interferometer,” Astronomy and Astrophysics 128, 221–227 (1998). [NASA ADS] [Google Scholar]
- B. Schmidt, “A coma-free telescope,” Mitt. Hamburg Sternv. 7, 15 (1932). [Google Scholar]
- G. Lemaitre, “New procedure for making Schmidt corrector plates,” Appl. Optics 11, 1630–1636 (1972). [NASA ADS] [CrossRef] [Google Scholar]
- J. E. Nelson, G. Gabor, L. K. Hunt, J. Lubliner, and T. S. Mast, “Stressed mirror polishing. 2: Fabrication of an off-axis section of a paraboloid,” Appl. Optics 19, 2341–2352 (1980). [NASA ADS] [CrossRef] [Google Scholar]
- J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University Press, Oxford, 1998). [Google Scholar]
- R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [NASA ADS] [CrossRef] [Google Scholar]
- L. E. Cohan, and D. W. Miller, “Integrated modeling for design of lightweight, active mirrors,” Opt. Eng. 50, 063003–063003-13 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- D. C. Redding, S. A. Basinger, A. E. Lowman, A. Kissil, P. Y. Bely, R. Burg, R. G. Lyon, et.al, “Wavefront sensing and control for a Next-Generation Space Telescope,” Proc. SPIE 3356, 758–772 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- M. Laslandes, M. Ferrari, E. Hugot, and G. Lemaitre, “In-flight aberrations corrections for large space telescopes using active optics,” Proc. SPIE 7739, 77393A–77393A-12 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- M. Laslandes, N. Rousselet, M. Ferrari, E. Hugot, J. Floriot, S. Vivès, G. Lemaitre, et.al, “Stress polishing of E-ELT segment at LAM: full-scale demonstrator status,” Proc. SPIE 8169, 816903–816903-10 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- S. P. Timoshenko, and S. Woinowsky-Krieger, Theory of Plates and Shells (McGRAW-Hill International Editions, New York, 1959). [Google Scholar]
- G. R. Lemaître, Astronomical Optics and Elasticity Theory - Active Optics Methods (Springer, Berlin, Heidelberg, 2009). [CrossRef] [Google Scholar]
- J. C. Dainty, A. V. Koryabin, and A. V. Kudryashov, “Low-Order Adaptive Deformable Mirror,” Appl. Optics 37, 4663–4668 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- R. H. Freeman, and J. E. Pearson, “Deformable mirrors for all seasons and reasons,” Appl. Optics 21, 580–588 (1982). [NASA ADS] [CrossRef] [Google Scholar]
- M. Laslandes, E. Hugot, M. Ferrari, and A. Liotard, “Mirror with mechanical device to generate optical aberrations” French Patent FR1102805 (2011). [Google Scholar]
- M. Laslandes, E. Hugot, and M. Ferrari, “Correcting device with a deformable mirror for the compensation of at least one aberration with a known evolution” French Patent FR1153390 (2011). [Google Scholar]
- I. Smith, and D. Griffiths, Programming the Finite Element Method (Fourth Edition, Wiley, Hoboken, 2004). [Google Scholar]
- J. Bonnans, J. Gilbert, C. Lemarechal, and C. Sagastizabal, Numerical optimization: theoretical and practical aspects (Springer, Berlin, Heidelberg, 2009). [Google Scholar]
- J. Lubliner, and J. E. Nelson, “Stressed mirror polishing. 1: A technique for producing nonaxisymmetric mirrors,” Appl. Optics 19, 2332–2340 (1980). [NASA ADS] [CrossRef] [Google Scholar]
- E. Hugot, G. R. Lemaître, and M. Ferrari, “Active optics: single actuator principle and angular thickness distribution for astigmatism compensation by elasticity,” Appl. Optics 47, 1401–1409 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- E. Hugot, M. Ferrari, K. E. Hadi, P. Vola, J. L. Gimenez, G. R. Lemaitre, P. Rabou, et.al, “Active Optics: stress polishing of toric mirrors for the VLT SPHERE adaptive optics system,” Appl. Optics 48, 2932–2941 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- M. Laslandes, C. Hourtoule, E. Hugot, M. Ferrari, C. Lopez, C. Devilliers, A. Liotard, and F. Chazallet, “Space active optics: performance of a deformable mirror for in-situ wave-front correction in space telescopes,” Proc. SPIE 8442 (2012). [Google Scholar]
- K. Patterson, S. Pellegrino, and J. Breckinridge, “Shape correction of thin mirrors in a recongurable modular space telescope,” Proc. SPIE 7731, 773121–773121-12 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- D. Wick, B. Bagwell, T. Martinez, D. Payne, S. Restaino, and R. Romeo, “Lightweight, Active Optics for Space and Near Space,” in Proceedings to The Advanced Maui Optical and Space Surveillance Technologies Conference, 13 (The Maui Economic Development Board, Maui, 2006). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.