Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 7, 2012
Article Number 12033
Number of page(s) 8
DOI https://doi.org/10.2971/jeos.2012.12033
Published online 29 August 2012
  1. J. Schmidtchen, A. Splett, B. Schuppert, K. Petermann, and G. Burbach, “Low loss singlemode optical waveguides with large cross-section in silicon-on-insulator,” Electron. Lett. 27, 1486–1488 (1991). [NASA ADS] [CrossRef] [Google Scholar]
  2. K. Preston, B. Schmidt, and M. Lipson, “Polysilicon photonic resonators for large-scale 3D integration of optical networks,” Opt. Express 15, 17283–17290 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  3. Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss ( 6.45dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express 16, 6425–6432 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  4. G. Cocorullo, F. G. D. Corte, I. Rendina, C. Minarini, A. Rubino, and E. Terzini, “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition,” Opt. Lett. 21, 2002–2004 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  5. A. Harke, M. Krause, and J. Müller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  6. S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express 18, 25283–25291 (2010). [CrossRef] [Google Scholar]
  7. R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108–3 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  8. S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  9. K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18, 9809–9814 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  10. F. G. Della Corte, S. Rao, G. Coppola, and C. Summonte, “Electro-optical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device,” Opt. Express 19, 2941–2951 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  11. T. Barwicz and H. A. Haus, ”Three-Dimensional Analysis of Scattering Losses Due to Sidewall Roughness in Microphotonic Waveguides,” J. Lightwave Technol. 23, 2719–2732 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  12. S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer Linewidth Uniformity in Silicon Nanophotonic Waveguide Devices Using CMOS Fabrication Technology,” IEEE J. Sel. Top. Quant. 16, 316–324 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  13. P. Dumon, G. Priem, L. Nunes, W. Bogaerts, D. Van Thourhout, P. Bienstman, T. Liang, et.al, “Linear and Nonlinear Nanophotonic Devices Based on Silicon-on-Insulator Wire Waveguides,” Jpn. J. Appl. Phys. 45 (8B), 6589–6602 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  14. R. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Elect. 27, 1971–1974 (1991). [NASA ADS] [CrossRef] [Google Scholar]
  15. S. Pogossian, L. Vescan, and A. Vonsovici, “The single-mode condition for semiconductor rib waveguides with large cross section,” J. Lightwave Technol. 16, 1851–1853 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  16. A. Harke, T. Lipka, J. Amthor, O. Horn, M. Krause, and J. Müller, “Amorphous Silicon 3-D Tapers for Si Photonic Wires Fabricated With Shadow Masks,” IEEE Photonic. Tech. L. 20, 1452–1454 (2008). [Google Scholar]
  17. S. Janz, A. Densmore, D.-X. Xu, P. Waldron, J. Lapointe, J. H. Schmid, T. Mischki, G. Lopinski, A. Delage, R. McKinnon, P. Cheben, and B. Lamontagne, Silicon Photonic Wire Waveguide Sensors (Springer Science + Business Media, Boston, 2009. [Google Scholar]
  18. G. R. Zhou, M. W. Geis, S. J. Spector, F. Gan, M. E. Grein, R. T. Schulein, J. S. Orcutt, J. U. Yoon, D. M. Lennon, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Effect of carrier lifetime on forward-biased silicon Mach-Zehnder modulators,” Opt. Express 16, 5218–5226 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  19. K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17, (2009). [Google Scholar]
  20. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47–73 (2012). [NASA ADS] [CrossRef] [Google Scholar]
  21. L. Chen, N. Sherwood-Droz, and M. Lipson, “Compact bandwidth-tunable microring resonators,” Opt. Lett. 32, 3361–3363 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  22. H. Shen, M. H. Khan, L. Fan, L. Zhao, Y. Xuan, J. Ouyang, L. T. Varghese, and M. Qi, “Eight-channel reconfigurable microring filters with tunable frequency, extinction ratio and bandwidth,” Opt. Express 18, 18067–18076 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  23. D. Sparacin, R. Sun, A. Agarwal, M. Beals, J. Michel, L. Kimerling, T. Conway, A. Pomerene, D. Carothers, M. Grove, D. Gill, M. Rasras, S. Patel, and A. White, “Low Loss Amorphous Silicon Channel Waveguides for Integrated Photonics,” in Proceedings to Group IV Photonics, 2006. 3rd IEEE International Conference on, 255–257 (IEEE, Ottawa, 2006). [Google Scholar]
  24. S. Rao, F. G. Della Corte, and C. Summonte, “Low-loss amorphous silicon waveguides grown by PECVD on indium tin oxide,” J. Europ. Opt. Soc. Rap. Public. 5, 10039s (2010). [NASA ADS] [CrossRef] [Google Scholar]
  25. T. Lipka, A. Harke, O. Horn, J. Amthor, and J. Müller, “Amorphous Waveguides for High Index Photonic Circuitry,” in Proceedings to Optical Fiber Communication Conference, OMJ2 (OFC/NFOEC, San Diego, 2009). [Google Scholar]
  26. K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett. 91, 141120–3 (2007). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.