Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 7, 2012
Article Number 12022
Number of page(s) 5
DOI https://doi.org/10.2971/jeos.2012.12022
Published online 21 June 2012
  1. D. I. Gittins, D. Bethell, D. J. Schiffrin, and R. J. Nichols, “A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups,” Nature 408, 67–69 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  2. S. W. Koch, and A. Knorr, “Optics in the nano-world,” Science 293, 2217–2218 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  3. D. S. Wen, and W. Ding, “Natural convective heat transfer of suspensions of titanium dioxide nanoparticles (Nanofluids),” IEEE T. Nanotechnol. 5, 220–227 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  4. S. P. Jang, and S. U. Choi, “Cooling performance of a microchannel heat sink with nanofluids,” Applied Therm. Eng. 26, 2457–2463 (2006). [CrossRef] [Google Scholar]
  5. K. Hamad-Schifferli, J. J. Schwartz, A. T. Santos, S. G. Zhang, and J. M. Jacobson, “Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna,” Nature 415, 152–155 (2002). [CrossRef] [Google Scholar]
  6. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-Enabled Photonics-Based Cancer Imaging and Therapy,” Technol. Cancer Res. T. 3, 33–40 (2004). [CrossRef] [Google Scholar]
  7. D. P. O. Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004). [Google Scholar]
  8. G. Huttmann, and R. Birngruber, “On the possibility of high-precision photo thermal micro effects and the measurement of fast thermal denaturation of proteins,” IEEE J. Sel. Top. Quant. 5, 954–962 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  9. G. Larsen, and S. Noriega, “Dendrimer-mediated formation of Cu–CuOx nanoparticles on silica and their physical and catalytic characterization,” Appl. Catal. A-Gen. 278, 73–81 (2004). [CrossRef] [Google Scholar]
  10. S. Tarasov, A. Kolubaev, S. Belyaev, M. Lerner, and F. Tepper, “Study of friction reduction by nanocopper additive to motor oil,” Wear 252, 63–69 (2002). [CrossRef] [Google Scholar]
  11. H. Wang, Y. Huang, Z. Tan, and X. Hu, “Transient mixing characteristic of reactor pressure vessel under pressurized thermal shock,” Anal. Chim. Acta 526, 13–17 (2004). [Google Scholar]
  12. S. Kapoor, and T. Mukherjee, “Photochemical formation of copper nanoparticles in poly n-vinyl pyrrolidone,” Chem. Phys. Lett. 370, 83–87 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  13. P. V. Kazakevich, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Laser induced synthesis of nanoparticles in liquids,” Appl. Surf. Sci. 252, 4373–4380 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  14. R. M. Tilaki, A. Irajizad, and S. M. Mahdavi, “Size, composition and optical properties of copper nanoparticles prepared by laser ablation in liquids,” Appl. Phys. A 88, 415–419 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  15. I. Capek, “Preparation of metal nanoparticles in water-in-oil (W/O) microemulsions Advances in Colloid and Interface,” Science 110, 49–74 (2004). [Google Scholar]
  16. M. Saito, K. Yasukawa, T. Umeda, and Y. Aoi, “Copper nanoparticles fabricated by laser ablation in polysiloxane,” Opt. Mat. 30, 1201–1204 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  17. J. Shen, R. D. Lowe, and R. D. Snook, “A model for CW laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992). [NASA ADS] [CrossRef] [Google Scholar]
  18. R. Zamiri, B. Z. Azmi, E. Shahriari, M. S. Husin, and M. Mahdi, “Thermal diffusivity measurement of silver nanofluid by using thermal lens technique,” J. Laser Appl. 23, 042002–042006 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  19. Q. Xue, and W. M. Xu, “A model of thermal conductivity of nanofluids with interfacial shells,” Mater. Chem. Phys. 90, 298–301 (2005). [CrossRef] [Google Scholar]
  20. C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, and C. P. G. Vallabhan, “Solvent effect on absolute fluorescence quantum yield of rhodamine 6G determined using transient thermal lens technique,” Mod. Phys. Lett. B 13, 563–576 (1999). [CrossRef] [Google Scholar]
  21. J. L. J. Perez, J. F. S. Ramirez, R. G. Fuentes, A. Cruz-Orea, and J. L. H. Perez, “Enhanced of the R6G Thermal Diffusivity on Aggregated Small Gold Particles,” Braz. J. Phys. 36, 1025–1028 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  22. A. J. Twarowski, and D. S. Kliger, “Multiphoton absorption spectra using thermal blooming theory,” Chem. Phys. 20, 253–258 (1977). [NASA ADS] [CrossRef] [Google Scholar]
  23. A. J. Twarowski, and D. S. Kliger, “Multiphoton absorption spectra using thermal blooming: II. Two-photon spectrum of benzene,” Chem. Phys. 20, 259–264 (1977). [NASA ADS] [CrossRef] [Google Scholar]
  24. L. P. Ding, Y. Fang, “The study of resonance Raman scattering spectrum on the surface of Cu nanoparticles with ultraviolet excitation and density functional theory,” Spectrochim. Acta A 67, 767–771 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  25. R. C. Weast, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1987). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.