Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 7, 2012
|
|
---|---|---|
Article Number | 12013 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.2971/jeos.2012.12013 | |
Published online | 18 May 2012 |
- J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [Google Scholar]
- D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [Google Scholar]
- B. L. Zhang, Y. Luo, X. G. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- X. Z Chen, Y. Luo, J. J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011). [CrossRef] [Google Scholar]
- M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostruct: Fundam. Appl. 6, 87–95 (2008). [Google Scholar]
- E. E. Narimanova and A. V. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- X. F. Xu, Y. J. Feng and T. Jiang, “Electromagnetic beam modulation through transformation optical structures,” New J. Phys. 10, 115027 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- C. García-Meca, M. M. Tung, J. V. Galán, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí and A. Martínez, “Squeezing and expanding light without reflections via transformation optics,” Opt. Express 19, 3562–3575 (2011). [CrossRef] [Google Scholar]
- M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- I. Gallina, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “General class of metamaterial transformation slabs,” Phys. Rev. B 81, 125124 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16, 11555–11567 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10, 1991–1997 (2010). [Google Scholar]
- D. H. Kwon and D. H. Werner, “Polarization splitter and polarization rotator designs based on transformation optics,” Opt. Express 16, 18731–18738 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Luo, J. Zhang, L. Ran, H. Chen and J. A. Kong, “Controlling the emission of electromagnetic source,” PIERS 4, 795–800 (2008). [CrossRef] [Google Scholar]
- N. Kundtz, D. A. Roberts, J. Allen, S. Cummer, and D. R. Smith, “Optical source transformations,” Opt. Express 16, 21215–21222 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- J. Li, S. Han, S. Zhang, G. Bartal, and X. Zhang, “Designing the Fourier space with transformation optics,” Opt. Lett. 34, 3128–3120 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- H. Y. Chen, B. Hou, S. Y. Chen, X. Y. Ao, W. J. Wen, and C. T. Chan, “Design and experimental realization of a broadband transformation media field rotator at microwave frequencies,” Phys. Rev. Lett. 102, 183903 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- W. X. Jiang, T. J. Cui, H. F. Ma, X. Y. Zhou, and Q. Cheng, “Cylindrical-to-plane-wave conversion via embedded optical transformation,” Appl. Phys. Lett. 92, 261903 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- G. X. Yu, W. X. Jiang and T. J. Cui, “Beam deflection and splitting using transformation optics,” Cent. Eur. J. Phys. 9, 183–188 (2011). [Google Scholar]
- H. Ma, S. B. Qu, Z. Xu, and J. F. Wang, “General method for designing wave shape transformers,” Opt. Express 16, 22072–22082 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9, 129–132 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- J. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. X. Ran, B. I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” PIERS 81, 437–446 (2008). [Google Scholar]
- D.-H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right-angle bends,” New J. Phys. 10, 115023 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- L. Lin, W. Wang, J. Cui, C. L Du, and X. G. Luo, “Design of electromagnetic refractor and phase transformer using coordinate transformation,” Opt. Express 16, 6815–6821 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- P.-H. Tichit, S. N. Burokur, D. Germain, and A. de Lustrac, “Design and experimental demonstration of a high-directive emission with transformation optics,” Phys. Rev. B 83, 155108 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- F. Kong, B. Wu, J. A. Kong, J. Huangfu, and S. Xi, “Planar focusing antenna design by using coordinate transformation technology,” Appl. Phys. Lett. 91, 253509 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Luo, L. X. He, S. Z. Zhu, H. L. W. Chan, and Y. Wang, “Flattening of conic reflectors via a transformation method,” Phys. Rev. A 84, 023843 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- E. Hecht, Optics (Addison-Wesley, San Francisco, 2002). [Google Scholar]
- M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999). [CrossRef] [Google Scholar]
- B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, New Jersey, 2007). [Google Scholar]
- J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill Companies, San Francisco, 1996). [Google Scholar]
- D. A. Roberts, N. Kundtz, and D. R. Smith, “Optical lens compression via transformation optics,” Opt. Express 17, 16535–16542 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- R. Yang, W. X. Tang, Y. Hao, and I. Youngs, “A coordiante transformation based broadband flat lens via microstrip array,” IEEE Antenn. Wirel. Pr. 10, 99–102 (2011). [Google Scholar]
- R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E 70, 046608 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- J. Li, and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- W. X. Tang, C. Argyropoulos, E. Kallos, W. Song, and Y. Hao, “Discrete coordinate transformation for designing all-dielectric flat antennas,” IEEE Trans. Antennas Propag. 58, 3795–3804 (2010). [CrossRef] [Google Scholar]
- T. J. Cui, D. R. Smith, and R. P. Liu, Metamaterials (Springer, New York, 2010). [CrossRef] [Google Scholar]
- Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission,” Phys. Rev. B 84, 165111 (2011). [CrossRef] [Google Scholar]
- T. C. Han and C.-W. Qiu, “Isotropic nonmagnetic flat cloaks degenerated from homogeneous anisotropic trapeziform cloaks,” Opt. Express 18, 13038–13043 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- M. Gharghi, C. Gladden, T. Zentgraf, Y. Liu, X. Yin, J. Valentine, and X. Zhang, “A Carpet Cloak for Visible Light,” Nano Lett. 11, 2825–2828 (2011). [Google Scholar]
- A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.