Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 7, 2012
Article Number 12011
Number of page(s) 8
DOI https://doi.org/10.2971/jeos.2012.12011
Published online 08 May 2012
  1. G. E. Keiser, “A Review of WDM Technology and Applications,” Opt. Fiber Technol. 5, 3–39 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  2. M. Wasfi, “Optical Fiber Amplifiers – Review,” Int. J. Comm. Netw. Infor. Sec. 1, 42–47 (2009). [Google Scholar]
  3. H. Ahmad, M. Z. Zulkifli, A. A. Latif, K. Thambiratnam, and S. W. Harun, “17-channels S band multiwavelength Brillouin/Erbium Fiber Laser Co-Pump with Raman source,” Laser Phys. 19, 2188–2193 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  4. D. Richardson, J. Nilsson, and W. Clarkson, “High Power Fiber Lasers: Current Status and Future Perspectives [Invited],” J. Opt. Soc. Am. B 27, 63–92 (2010). [Google Scholar]
  5. K. Inoue, and H. Toba, “Wavelength Conversion Experiment using Fiber Four-Wave Mixing,” IEEE Photonic. Tech. L. 4, 69–72 (1992). [CrossRef] [Google Scholar]
  6. E. Yahel, and A. Hardy, “Amplified Spontaneous Emission in High-Power, Er3+.Yb3+ Codoped Fiber Amplifiers for Wavelength-Division-Multiplexing Applications,” J. Opt. Soc. Am. B 20, 1198–1203 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  7. D. Cotter, and A. D. Ellis, “Asynchronous Digital Optical Regeneration and Networks,” J. Lightwave Technol. 16, 2068–2080 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  8. S. Abbott, “Review of 20 Years of Undersea Optical Fiber Transmission System Development and Deployment since TAT-8,” in Proceedings to Optical Communication, 2008. ECOC 2008. 34th European Conference on, 1–4 (ECOC, Brussel, 2008). [Google Scholar]
  9. K. Rottwitt, and J. H. Povlsen, “Analysing the Fundamental Properties of Raman Amplifiers in Optical Fibers,” J. Lightwave Technol. 23, 3597–3613 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  10. J. H. Lee, Y. M. Chang, Y. G. Han, H. Chung, S. H. Kim, and S. B. Lee, “A Detailed Experimental Study on Single Pump Raman/EDFA Hybrid Amplifiers: Static, Dynamic, and System Performance Comparison,” J. Lightwave Technol. 23, 3848 (2005). [NASA ADS] [Google Scholar]
  11. P. Doussiere, A. Jourdan, G. Soulage, P. Garabedian, C. Graver, T. Fillion, E. Derouin, and D. Leclerc, “Clamped Gain Travelling Wave Semiconductor Optical Amplifier for Wavelength Division Multiplexing Applications,” in Proceedings to Semiconductor Laser Conference, 1994., 14th IEEE International, 185–186 (IEEE, Maui, 1994). [CrossRef] [Google Scholar]
  12. K. Morito, “Output-Level Control of Semiconductor Optical Amplifier by External Light Injection,” J. Lightwave Technol. 23, 4332–4341 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  13. T. Torounidis, P. A. Andrekson, and B.-E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photonic. Tech. L. 18, 1194–1196 (2006). [CrossRef] [Google Scholar]
  14. J. M. Chavez Boggio, P. Dainese, F. Karlsson, and H. L. Fragnito, “Broad-Band 88% Efficient Two-Pump Fiber Optical Parametric Amplifier,” IEEE Photonic. Tech. L. 15, 1528–1530 (2003). [CrossRef] [Google Scholar]
  15. Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain Characteristics of Tellurite-Based Erbium-Doped Fiber Amplifiers for 1.5-µm Broadband Amplification,” Opt. Lett. 23, 274 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  16. S. Jiang, B.-C. Hwang, T. Luo, K. Seneschal, F. Smektala, S. Honkanen, J. Lucas, and N. Peyghambarian, “Net Gain of 15.5 dB from a 5.1 cm-Long Er3+ Doped Phosphate Glass Fiber,” in Proceedings to Optical Fiber Communications, PD5–1 (IEEE, Baltimore, 2000). [Google Scholar]
  17. A. Cucinotta, F. Poli, and S. Selleri, “Design of Erbium-Doped Triangular Photonic-Crystal-Fiber-Based Amplifiers,” IEEE Photonic. Tech. L. 16, 2027 (2004). [CrossRef] [Google Scholar]
  18. S. Aozasa, H. Masuda, and M. Shimizu, “S-band Thulium-Doped Fiber Amplifier Employing High Thulium Concentration Doping Technique,” J. Lightwave Technol. 24, 3842–3848 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  19. S. W. Harun, N. Tamchek, S. Shahi, and H. Ahmad, “L-band Amplification and Multi-Wavelength Lasing with Bismuth-Based Erbium Doped Fiber,” Prog. Electromagn. Res. 6, 1–12, (2009). [CrossRef] [Google Scholar]
  20. S. D. Emami, P. Hajireza, F. Abd-Rahman, H. A. Abdul-Rashid, H. Ahmad, and S. W. Harun, “Wide-Band Hybrid Amplifier Operating in S-Band Region,” Prog. Electromagn. Res. 102, 301–313 (2010). [Google Scholar]
  21. E. Snoeks, P. G. Kik, and A. Polman, “Concentration Quenching in Erbium Implanted Alkali Silicate Glass,” Opt. Mater. 5, 159 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  22. D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic Site Determinations in Erbium-Doped Lithium Niobate,” Phys. Rev. B 53, 2334 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  23. M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Wideband EDFA Based on Erbium Doped Crystalline Zirconia Yttria Alumino Silicate Fiber,” J. Lightwave Technol. 28, 2919–2924 (2011). [Google Scholar]
  24. M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifiers,” Opt. Lett. 35, 2882–2884 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  25. J. R. Armitage, “Spectral Dependence of the Small-Signal Gain around 1.5 µm in Erbium Doped Silica Fiber Amplifiers,” IEEE J. Quantum Electron. 26, 423–425 (1990). [NASA ADS] [CrossRef] [Google Scholar]
  26. B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. C. Larsen, “The design of erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 1105–1112 (1991). [NASA ADS] [CrossRef] [Google Scholar]
  27. J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, “Spectroscopic Properties and Thermal Stability of Erbium-Doped Bismuth-Based Glass for Optical Amplifier,” J. Appl. Phys. 93, 977–983 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  28. P. Peterka, B. Faure, W. Blanc, M. Karásek, and B. Dussardier, “Theoretical Modelling of S-band Thulium-Doped Silica Fibre Amplifiers,” Opt. Quant. Electron 36, 201–212 (2004). [CrossRef] [Google Scholar]
  29. K. Kikuchi, and C. Lorattanasane, “Design of Highly Efficient Four-Wave Mixing Devices using Optical Fibers,” IEEE Photonic. Tech. L. 6, 992–994 (1994). [CrossRef] [Google Scholar]
  30. O. Aso, A. Shin-Ichi, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, “Broadband Four-Wave Mixing Generation in Short Optical Fibres,” Electron. Lett. 36, 709–711 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  31. G. D. Wilk, R. M. Wallace, and J. M. Anthony, “Hafnium and Zirconium Silicates for Advanced Gate Dielectrics,” J. Appl. Phys. 87, 484–492 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  32. G. Rayner, R. Therrien, and G. Lucovsky, “The structure of plasma-deposited and annealed pseudo-binary ZrO2-SiO2 alloys,” Proc. Mater. Res. Soc. Symp. 611, C1.3.1–C1.3.9 (2000). [Google Scholar]
  33. P. F. James, “Liquid-Phase Separation in Glass-Forming Systems,” J. Mater. Sci. 10, 1802–1825 (1975). [NASA ADS] [CrossRef] [Google Scholar]
  34. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, London, 1995). [Google Scholar]
  35. K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “CW Three-Wave Mixing in Single-Mode Fibers,” J. Appl. Phys. 49, 50980–51006 (1978). [Google Scholar]
  36. N. Shibata, R. P. Braun, and R. G. Warrts, “Phase-Mismatch Dependence of Efficiency of Wave Generation through Four-Wave Mixing in a Singlemode Fiber,” Quantum Electron. 23, 1205–1211 (1987). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.