Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 7, 2012
|
|
---|---|---|
Article Number | 12004 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.2971/jeos.2012.12004 | |
Published online | 22 March 2012 |
- E. Compain, S. Poirier, and B. Drevillon, “General and Self-Consistent Method for the Calibration of Polarization Modulators, Polarimeters, and Mueller-Matrix Ellipsometers,” Appl. Optics 38, 3490–3502 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- C. Macías-Romero, M. R. Foreman, and P. Török, “Spatial and temporal variations in vector fields,” Opt. Express 19, 25066–25076 (2011). [CrossRef] [Google Scholar]
- S. Inoué, “Studies of depolarisation of light at microscope lens surfaces I: The origin of stray light by rotation at the lens surfaces,” Exp. Cell. Biol. 3, 199–208 (1952). [Google Scholar]
- A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455, 112–119 (2004). [CrossRef] [Google Scholar]
- R. M. A. Azzam, E. Masetti, I. M. Elminyawi, and A. M. El-Saba, “Construction, calibration, and testing for a fourdetector photopolarimeter,” Rev. Sci. Instrum. 59, 84–88 (1988). [NASA ADS] [CrossRef] [Google Scholar]
- R. M. A. Azzam, and A. G. Lopez, “Accurate calibration of the four-detector photopolarimeter with imperfect polarizing polarizing elements,” J. Opt. Soc. Am. A 6, 1513–1521 (1989). [NASA ADS] [CrossRef] [Google Scholar]
- K. Brudzewski, “Static Stokes ellipsometer: general analysis and optimization,” J. Mod. Opt. 38, 889–896 (1991). [NASA ADS] [CrossRef] [Google Scholar]
- D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75 (2000). [CrossRef] [Google Scholar]
- D. Lara, and C. Dainty, “Axially resolved complete Mueller matrix confocal microscopy,” Appl. Optics 45, 1917–1930 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- R. M. A. Azzam, and N. M. Bashara, Ellipsometry and Polarized Light (Amsterdam: North-Holland, Amsterdam, 1977). [Google Scholar]
- S. Lu, and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- R.A. Horn, and C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985). [CrossRef] [Google Scholar]
- M. Darouach, “Solution to Sylvester equation associated to linear descriptor systems,” Syst. Control Lett. 55(10), 835–838 (2006). [CrossRef] [Google Scholar]
- B. Zhou, and G.R. Duana, “On the generalized Sylvester mapping and matrix equations,” Syst. Control Lett. 57(3), 200–208 (2008). [CrossRef] [Google Scholar]
- C. J. C. Burges, and V. Vapnik, “A new method for constructing artificial neural networks,” Interim technical report, ONR contract N00014-94-c-0186, AT&T Bell Laboratories (1995). [Google Scholar]
- H. Ren, and R. Dekany, “Fast wave-front reconstruction by solving the Sylvester equation with the alternating direction implicit method,” Opt. Express 12, 3279–3296 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- F. R. Gantmacher, Theory of Matrices (Chelsea Publishing Co., New York, 1977). [Google Scholar]
- H. T. Burgess, “Solution of the Matrix Equation X−1 AX = N,” Ann. Math. 19(1), 30–36 (1917). [Google Scholar]
- H. Neudecker, “A Note on Kronecker Matrix Products and Matrix Equation Systems,” SIAM J. Appl. Math. 17(3), 603–606 (1969). [CrossRef] [Google Scholar]
- H. V. Henderson, and S. R. Searle, “Vec and Vech Operators for Matrices, with Some Uses in Jacobians and Multivariate Statistics,” Can. J. Stat. 7(1), 65–81 (1979). [Google Scholar]
- J. W. Brewer, “Kronecker Products and Matrix Calculus in System Theory,” IEEE T. Circuits Syst. 25(9), 772–781 (1978). [CrossRef] [Google Scholar]
- A. Graham, Kronecker Products and Matrix Calculus with Applications (Ellis Horwood Limited, Chichester, 1981). [Google Scholar]
- M. A. Epton, “Methods For The Solution Of AXD-BXC=E And Its Application In The Numerical Solution Of Implicit Ordinary Differential Equations,” BIT 20, 341–345 (1980). [CrossRef] [Google Scholar]
- T. F. Coleman, and A. Pothen, “The null space problem. I. Complexity,” SIAM J. Algebra. Discr. 7, 527–537 (1986). [CrossRef] [Google Scholar]
- R. A. Chipman, Polarization Aberrations (PhD, University of Arizona, 1992). [Google Scholar]
- W. H. Press, and S. A. Teukolsky, Numerical recipes in C. The art of scientific computing (Cambridge University Press, Cambridge, 1992). [Google Scholar]
- A. De Martino, K. Yong-Ki, E. Garcia-Caurel, B. Laude, and B. Drevillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28(8), 616–618 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- P. Török, P. D. Higdon, and T. Wilson, “On the general properties of polarising conventional and confocal microscopes,” Opt. Commun. 148, 300–315 (1998). [CrossRef] [Google Scholar]
- B. R. Boruah and M. A. A. Neil, “Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam,” Rev. Sci. Instr. 80, 013705 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- A. J. Laub, Matrix Analysis for Scientists and Engineers (Society for Industrial and Applied Mathematics, Philadelphia, 2005). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.