Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 7, 2012
Article Number 12002
Number of page(s) 5
DOI https://doi.org/10.2971/jeos.2012.12002
Published online 22 March 2012
  1. W-D. Li, and S. Y. Chou, “Solar-blind deep-UV band-pass filter (250-350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography,” Opt. Express 18, 931 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  2. B. Cui, Z. Yu, H. Ge, S. Y. Chou, “Large area 50 nm period grating by multiple nanoimprint lithography and spatial frequency doubling,” Appl. Phys. Lett. 90, 043118 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  3. J. Haisma, “Nanoimprint lithography combined with direct bonding: A possibility to construct quantum dots, wires, and planes in vertical cascade,” Appl. Phys. Lett. 89, 244105 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  4. A. A. Letailleur, K. Nomenyo, S. Mc Murtry, E. Barthel, E. Sondergard, and G. Lerondel, “High order symmetry interference lithography based nanoimprint,” J. Appl. Phys. 109, 016104 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  5. J. Gong, D. J. Lipomi, J. Deng, Z. Nie, X. Chen, N. X. Randall, R. Nair, and G. M. Whitesides, “Micro- and Nanopatterning of Inorganic and Polymeric Substrates by Indentation Lithography,” Nano Lett. 10, 2702–2708 (2010). [Google Scholar]
  6. B. D Gates, Q. B. Xu, M. Stewart, D. Ryan, C. G. Wilson, and G. M. Whitesides, “New approach for nanofabrication: Molding, printing, and other techniques,” Chem. Rev. 105, 1171 (2005). [CrossRef] [Google Scholar]
  7. S. Elhadj, R. M. Rioux, M. D. Dickey, J. J. DeYoreo, and G. M. Whitesides, “Subnanometer Replica Molding of Molecular Steps on Ionic Crystals,” Nano Lett. 10, 4140–4145 (2010). [Google Scholar]
  8. C. J. Brinker, and G. W. Scherer, Sol-Gel Science (Academic Press, San Diego, 1990). [Google Scholar]
  9. S. Sakka, Handbook of sol-gel science and technology: processing, characterization and applications (Kluwer Academic Publisher, New York 2005). [Google Scholar]
  10. A. Chiappini, A. Chiasera, S. Berneschi, C. Armellini, A. Carpentiero, M. Mazzola, E. Moser, S. Varas, C. C. Righini, and M. Ferrari, “Sol-gel-derived photonic structures: fabrication, assessment, and application,” J. Sol.-Gel. Sci. Techn. 60 (3), 408–425 (2011). [CrossRef] [Google Scholar]
  11. G. Brusatine, and G. D. Giustina, “Hybrid organic-inorganic sol-gel materials for micro and nanofabrication,” J. Sol.-Gel. Sci. Techn. 60 (3), 299 (2011). [CrossRef] [Google Scholar]
  12. X. H. Zhang, W. Que, C. Y. Jia, J. X. Hu, and W. G. Liu, “Fabrication of micro-lens arrays built in photosensitive hybrid films by UV-cured imprinting technique,” J. Sol.-Gel. Sci. Techn. 60, 71–80 (2011). [CrossRef] [Google Scholar]
  13. A. Schleunitz, C. Spreu, T. Makela, T. Haatainen, A. Klukowska, and H. Schift, “Hybrid working stamps for high speed roll-to-roll nanoreplication with molded sol-gel relief on a metal backbone,” Microelectron. Eng. 88, 2113–2116 (2011). [CrossRef] [Google Scholar]
  14. G. Philipp, and H. Schmidt, “New materials for contact lenses prepared from Si- and Ti-alkoxides by the sol-gel process,” J. Non-Cryst. Solids 63, 283–292 (1984). [NASA ADS] [CrossRef] [Google Scholar]
  15. U. Streppel, P. Dannberg, C. Wachter, A. Brauer, L. Fronhlich, R. Houbertz, and M. Popall, “New wafer-scale fabrication method for stacked optical waveguide interconnects and 3D micro-optic structures using photoresponsive (inorganic-organic hybrid) polymers,” Opt. Mater. 21, 475–483 (2002). [Google Scholar]
  16. R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J. U. Park, L. Fronhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wachter, and A. Brauer, “Inorganic-organic hybrid materials for application in optical devices,” Thin Solid Film 442, 194–200 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  17. U. Hass, A. Haas, V. Stazinger, H. Pichler, G. Leising, G. Jakopic, B. Stadlober, R. Houbertz, G. Domann, and A. Schmitt, “Hybrid polymers as tunable and directly-patternable gate dielectrics in organic thin-film transistors,” Phys. Rev. B 73, 235339 (2006). [CrossRef] [Google Scholar]
  18. X. M. Du, T. Tousam, L. Degachi, J. L. Guilbault, M. P. Andrews, and S. I. Najafi, “Sol-gel waveguide fabrication parameters: an experimental investigation,” Opt. Eng. 37, 1101–1104 (1998). [CrossRef] [Google Scholar]
  19. P. Gupta, P. P. Markowicz, K. Baba, J. O’reilly, M. Samoc, and P. N. Prasad, “DNA-Ormocer based biocomposite for fabrication of photonic structures,” Appl. Phys. Lett. 88, 213109 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  20. A. D. Gianni, R. Bongiovanni, S. Turri, F. Defloarian, G. Malucelli, and G. Rizza, “UV-Cured Coatings Based on Waterborne Resins and SiO2 Nanoparticles,” J. Coat. Technol. Res. 6 (2) 177–185 (2009). [CrossRef] [Google Scholar]
  21. C.-C. Chang, L.-P. Cheng, F.-H. Huang, C.-Y. Lin, C.-F. Hsieh, and W.-H. Wang, “Preparation and characterization of TiO2 hybrid sol for UV-curable high-refractive-index organic-inorganic hybrid thin films,” J. Sol.-Gel. Sci. Techn. 55, 199 (2010). [CrossRef] [Google Scholar]
  22. C. C. Barghorn, C. Belon, and A. Chemtob, “Polymerization of Hybrid Sol-Gel Materials Catalyzed by Photoacids Generation,” J. Photopolym. Sci. Tec. 23, 129–134 (2010). [CrossRef] [Google Scholar]
  23. M. Pokrass, Z. Burshtein, and R. Gvishi, “Thermo-optic coefficient in some hybrid organic/inorganic fast sol-gel glasses,” Opt. Mater. 32, 975 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  24. R. Gvishi, “Fast sol-gel technology: from fabrication to applications,” J. Sol.-Gel. Sci. Techn. 50, 241 (2009). [CrossRef] [Google Scholar]
  25. M. Pokrass, G. Bar, I. Gozman, and R. Gvishi, “Infrared and X-ray photoelectron spectroscopy studies of hybrid organic/inorganic fast sol-gel glasses,” Opt. Mater. 34, 341 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  26. R. Gvishi, M. Pokrass, and G. Strum, “Optical bonding with fast sol-gel,” J. Europ. Opt. Soc. Rap. Public. 4, 09026 (2009). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.