Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 6, 2011
Article Number 11060
Number of page(s) 12
DOI https://doi.org/10.2971/jeos.2011.11060
Published online 21 December 2011
  1. J.-M. Desse, P. Picart, and P. Tankam, “Digital three-color holographic interferometry for flow analysis” Opt. Express 16, 5471–5480 (2008). [CrossRef] [Google Scholar]
  2. O. Kafri, and I. Glatt, The Physics of Moiré Metrology (Wiley, New York, 1989). [Google Scholar]
  3. F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to microholography” Appl. Opt. 23, 4140–4148 (1984). [NASA ADS] [CrossRef] [Google Scholar]
  4. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH Verlag GmbH & Co. KGaA, 2004). [CrossRef] [Google Scholar]
  5. F. Nicolas, S. Coëtmellec, M. Brunel, and D. Lebrun, “Digital in-line holography with a sub-picosecond laser beam” Opt. Commun. 268, 27–33 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  6. L. Mandel, and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995). [CrossRef] [Google Scholar]
  7. H. T. Eyyuboǧlu, Y. Baykal, and Y. Cai, “Complex degree of coherence for partially coherent general beams in atmospheric turbulence” J. Opt. Soc. Am. A 24, 2891–2901 (2007). [CrossRef] [Google Scholar]
  8. D. Gabor, “A new microscopic principle” Nature 161, 777–778 (1948). [CrossRef] [PubMed] [Google Scholar]
  9. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company Publishers, Greenwood village, USA, 2005). [Google Scholar]
  10. U. Schnars, and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction” Appl. Opt. 33, 179–181 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  11. D. J. Stigliani, JR., R. Mittra, and R. G. Semonin, “Particle-Size Measurement Using Forward-Scatter Holography” J. Opt. Soc. Am. 60, 1059–1067 (1970) [NASA ADS] [CrossRef] [Google Scholar]
  12. F. Nicolas, S. Coëtmellec, M. Brunel, D. Allano, D. Lebrun, and A. J. E. M. Janssen, “Application of the fractional Fourier transformation to digital holography recorded by an elliptical, astigmatic Gaussian beam” J. Opt. Soc. Am. A 22, 2569–2577 (2005). [CrossRef] [Google Scholar]
  13. J. J. Wen, and M. Breazeale, “Gaussian beam functions as a base function set for acoustical field calculations” in Proceedings to IEEE Ultrasonics Symposium 1137–1140 (IEEE, Denver, 1987). [Google Scholar]
  14. J. J. Wen, and M. Breazeale, “A diffraction beam expressed as the superposition of Gaussian beams,” J. Acoust. Soc. Am. 83, 1752–1756 (1988). [NASA ADS] [CrossRef] [Google Scholar]
  15. S. Coëtmellec, N. Verrier, M. Brunel, D. Lebrun, “General formulation of digital in-line holography from correlation with a chirplet function”, J. Eur. Opt. Soc.-Rapid 5, 10027 (2010). [CrossRef] [Google Scholar]
  16. F. Dubois, M. L. N. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43, 1131–1139 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  17. J. W. Goodman, Statistical Optics (Wiley Classics Library, New York, 2000). [Google Scholar]
  18. A. E. Siegman, Lasers (University Science Books, Mill Valley, 1986). [Google Scholar]
  19. X. Du, and D. Zhao, “Propagation of elliptical Gaussian beams in apertured and misaligned optical systems,” J. Opt. Soc. Am. A 23, 1946–1950 (2006). [CrossRef] [Google Scholar]
  20. N. Verrier, S. Coëtmellec, M. Brunel, D. Lebrun, and A. J. E. M Janssen, “Digital in-line holography with an elliptical, astigmatic Gaussian beam: wide-angle reconstruction,” J. Opt. Soc. Am. A 25, 1459–1466 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  21. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14, 5895–5908 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  22. B. Ge, Q. Lu, and Y. Zhang, “Particle digital in-line holography with spherical wave recording”, Chin. Opt. Lett. 01, 517 (2003). [Google Scholar]
  23. R. B. Owen, and A. A. Zozulya, “In-line digital holographic sensor for monitoring and characterizing marine particulates”, Opt. Eng. 39, 2187 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  24. A. C. McBride, and F. H. Kerr, “On Namias’s fractional Fourier transforms”, IMA J. Appl. Math. 39, 159–175 (1987). [CrossRef] [Google Scholar]
  25. V. Namias, “The fractional order Fourier transform and its application to quantum mechanics”, J. Inst. Maths Its Applics, 25, 241–265 (1980). [NASA ADS] [CrossRef] [Google Scholar]
  26. A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform”, J. Opt. Soc. Am. A 10, 2181–2186 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  27. M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions (Dover Publications, Inc., New York, 1970). [Google Scholar]
  28. J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Assessment of an extended Nijboer-Zernike approach for the computation of optical point-spread functions”, J. Opt. Soc. Am. A 19, 858–870 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  29. A. J. E. M. Janssen, “Extended Nijboer-Zernike approach for the computation of optical point-spread functions”, J. Opt. Soc. Am. A 19, 849–857 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  30. A. J. E. M. Janssen, “New analytic results for the Zernike circle polynomials from a basic result in the Nijboer-Zernike diffraction theory”, J. Europ. Opt. Soc. Rap. Public. 6, 11028 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  31. A. J. E. M. Janssen, J. J. M. Braat, and P. Dirksen, “On the computation of the Nijboer-Zernike aberration integrals at arbitrary defocus,” J. Mod. Opt. 51, 687–703 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  32. W. J. Tango, “The circle polynomials of Zernike and their application in optics”, Appl. Phys. 13, 327–332 (1977). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.