Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 6, 2011
Article Number 11056
Number of page(s) 11
DOI https://doi.org/10.2971/jeos.2011.11056
Published online 12 December 2011
  1. J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film”, Appl. Phys. Lett. 73, 2078 (1998). [CrossRef] [Google Scholar]
  2. J. Tominaga, H. Fuji, A. Sato, T. Nakano, and N. Atoda, “The Characteristics and the Potential of Super Resolution Near-Field Structure”, Jpn. J. Appl. Phys. 39, 957 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  3. J. Tominaga, H. Fuji, A. Sato, T. Nakano, T. Fukaya, and N. Atoda, “The Near-Field Super-Resolution Properties of an Antimony Thin Film”, Jpn. J. Appl. Phys. 37, L1323 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  4. T. Shintani, M. Terao, H. Yamamoto, and T. Naito, “A New Super-Resolution Film Applicable to Read-Only and Rewritable Optical Disks”, Jpn. J. Appl. Phys. 38, 1656 (1999). [CrossRef] [Google Scholar]
  5. D. Rong Ou, J. Zhu, and J. Hao Zhao, “Approach for imaging optical super-resolution based on Sb films”, Appl. Phys. Lett. 82, 1521 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  6. M. Kuwahara, T. Shima, A. Kolobov, and J. Tominaga, “Thermal Origin of Readout Mechanism of Light-Scattering Super-Resolution Near-Field Structure Disk”, Jpn. J. Appl. Phys. 43, L8 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  7. T. Shima, M. Kuwahara, T. Fukaya, T. Nakano, and J. Tominaga, “Super-Resolutional Readout Disk with Metal-Free Phthalocyanine Recording Layer”, Jpn. J. Appl. Phys. 43, L88 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  8. Y. Yamakawa, K. Kurihara, M. Kuwahara, T. Shima, T. Nakano, and J. Tominaga, “Optical Disc Simulation Program Unified by Electromagnetic and Thermal Distributions”, Jpn. J. Appl. Phys. 45, 1463 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  9. J. Pichon, R. Anciant, J. M. Bruneau, B. Hyot, S. Gidon, M. F. Armand, and L. Poupinet, Multiphysics simulation of superresolution BD ROM optical disk readout, (Optical Data Storage, SPIE, 2006). [Google Scholar]
  10. J. S. Kim, K. Kwak, and C.-Y. You, “Signal Modulation of Super Read Only Memory with Thermally Activated Aperture Model”, Jpn. J. Appl. Phys. 47, 5845 (2008). [CrossRef] [Google Scholar]
  11. A. C. Assafrao, S. F. Pereira, H. P. Urbach, C. Fery, L. von Riewel, and S. Knappmann, “A numerical model for superresolution effect in optical discs”, (SPIE, 2010) [Google Scholar]
  12. A. Fukumoto, and S. Kubota, “Superresolution of Optical Disks Using a Small Aperture”, Jpn. J. Appl. Phys. 31, 529 (1992). [NASA ADS] [CrossRef] [Google Scholar]
  13. T. Ariyoshi, T. Shimano, T. Shintani, and M. Terao, “Read-Out Signal Simulation of an Optical Disk Having an Oxide Super-Resolution Film”, Jpn. J. Appl. Phys. 39, 4013 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  14. J. K. Lee, J. H. Kim, C. S. Chung, I. O. Hwang, K. H. Jung, and H. K. Kim, “Method and Apparatus for Reproducing Data of Super Resolution Near Field Read-Only Memory disc”, U.S. Patent 20060002281 (2006). [Google Scholar]
  15. H. H. Hophins, “Diffraction theory of laser read-out systems for optical video discs”, J. Opt. Soc. Am. 69, 4 (1979). [NASA ADS] [CrossRef] [Google Scholar]
  16. J. Braat, Readout of Optical discs, Principles of Optical discs, (Adam Hilger, Bristol, UK, 1985). [Google Scholar]
  17. V. B. Jipson, and C. C. Williams, “Two-dimensional modeling of an optical disk readout”, Appl. Optics 14, 2202 (1983). [NASA ADS] [CrossRef] [Google Scholar]
  18. T. D. Milster, “New Way to Describe Diffraction From Optical Disks”, Appl. Optics 37, 6878 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  19. R. E. Simpson, P. Fons, X. Wang, A. V. Kolobov, T. Fukaya, and J. Tominaga, “Non-melting super-resolution near-field apertures in Sb-Te alloys”, Appl. Phys. Lett. 97, 161906 (2010). [CrossRef] [Google Scholar]
  20. Thomson-Villingen, Personal Communication, (Delft, 2010) [Google Scholar]
  21. M. Kuwahara, O. Suzuki, N. Taketoshi, Y. Yamakawa, T. Yagi, P. Fons, K. Tsutsumi, M. Suzuki, T. Fukaya, J. Tominaga, and T. Baba, “Measurements of Temperature Dependence of Optical and Thermal Properties of Optical Disk Materials”, Jpn. J. Appl. Phys. 45, 1419 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  22. S. Ohkubo, K. Aoki, and D. Eto, “Temperature dependence of optical constants for InSb films including molten phases”, Appl. Phys. Lett. 92, 011919 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  23. G. Pilard, C. Féry, L. Pacearescu, H. Hoelzemann, and S. Knappmann, “Study of Super-Resolution Read-Only-Memory Disk with a Semiconducting or Chalcogenide Mask Layer”, Jpn. J. Appl. Phys. 48, 03A064 (2009). [CrossRef] [Google Scholar]
  24. A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “On the Focused Field Embedded in a Super-Rens Medium”, Jpn. J. Appl. Phys. 50, 102206 (2011). [CrossRef] [Google Scholar]
  25. J. Tominaga, and T. Nakano, Optical Near Field Recording, (Springer, Heidelberg, 2004). [Google Scholar]
  26. T. D. Milster, and R. S. Upton, “Fundamental Principles of Crosstalk in Optical Data Storage”, Jpn. J. Appl. Phys. 38, 1608 (1999). [CrossRef] [Google Scholar]
  27. N. Miyagawa, Y. Gotoh, E. Ohno, K. Nishiuchi, and N. Akahira, “Land and Groove Recording for High Track Density on Phase-Change Optical Disks”, Jpn. J. Appl. Phys. 32, 5324 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  28. H. Minemura, Y. Anzai, S. Eto, J. Ushiyama, and T. Shintani, “Novel Signal Processing Method for Super-Resolution Discs” in Proceedings on Optical Data Storage, (Optical Society of America, Portland, Oregon, 2007). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.