Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 6, 2011
Article Number 11041
Number of page(s) 7
DOI https://doi.org/10.2971/jeos.2011.11041
Published online 24 August 2011
  1. S. Quabis, R. Dorn, M. Eberler, O. Gloeckl, and G. Leuchs, “Focusing light to a tighter spot”, Opt. Commun. 179, 1455–1461 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  2. R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam”, Phys. Rev. Lett. 91, 233901 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  3. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization”, Opt. Express 12, 3377–3382 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  4. V. G. Niziev and V. Nesterov, “Influence of beam polarization on laser cutting efficiency”, J. Phys. D. Appl. Phys. 32, 1455–1461 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  5. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Spinger-Verlag, 1988). [CrossRef] [Google Scholar]
  6. P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure”, Opt. Express 18, 10905–10923 (2010). [CrossRef] [Google Scholar]
  7. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically”, Appl. Opt. 29, 2234–2239 (1990). [NASA ADS] [CrossRef] [Google Scholar]
  8. R. Yamaguchi, T. Nose, and S. Sato, “Liquid Crystal Polarizers with Axially Symmetrical Properties”, Jpn. J. Appl. Phys. 28, 1730–+ (1989). [NASA ADS] [CrossRef] [Google Scholar]
  9. S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality”, Appl. Phys. B - Lasers O. 81, 597–600 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  10. Z. Ghadyani, I. Vartiainen, I. Harder, W. Iff, A. Berger, N. Lindlein, and M. Kuittinen, “Concentric ring metal grating for generating radially polarized light”, Appl. Opt. 50, 2451–2457 (2011). [NASA ADS] [CrossRef] [Google Scholar]
  11. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings”, Opt. Lett. 27, (2002). [Google Scholar]
  12. U. Levy, C. Tsai, L. Pang, and Y. Fainman, “Engineering space-variant inhomogeneous media for polarization control”, Opt. Lett. 29, 1718–1720 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  13. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum”, Phil. Mag. 4, 396–402 (1902). [CrossRef] [Google Scholar]
  14. G. M. Lerman and U. Levy, “Generation of radially polarized light beam using space-variant subwavelength gratings at 1064 nm”, Opt. Lett. 33, 2782–2784 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  15. D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics”, Appl. Phys. Lett. 6, 492–494 (1983). [NASA ADS] [CrossRef] [Google Scholar]
  16. T. Baak, “Silicon oxynitride; a material for GRIN optics”, Appl. Optics 21, 1069–1072 (1982). [NASA ADS] [CrossRef] [Google Scholar]
  17. M. Neviere, Light propagation in periodic media (Marcel Dekker, 2003). [Google Scholar]
  18. D. H. Goldstein, Polarized Light (Marcel Dekker, 2003). [Google Scholar]
  19. E. A. Lee and D. G. Messerschmidt (eds.), Digital Communication, 2nd edn. (Kluwer Academic, Boston, MA, 1994). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.