Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 6, 2011
|
|
---|---|---|
Article Number | 11034 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.2971/jeos.2011.11034 | |
Published online | 14 June 2011 |
- D. Gabor, “A new microscope principle” Nature 161, 777–778 (1948). [CrossRef] [PubMed] [Google Scholar]
- D. Gabor, “Microscopy by reconstructed wave-fronts” Royal Society of London Proceedings Series A 197, 454–487 (1949). [NASA ADS] [Google Scholar]
- D. Gabor, “Microscopy by reconstructed wave fronts: II”, Proc. Phys. Soc. B 64, 449–469 (1951). [NASA ADS] [CrossRef] [Google Scholar]
- D. Gabor, and W. P. Goss, “Interference microscope with total wavefront reconstruction” J. Opt. Soc. Am. 56, 849–856 (1966). [CrossRef] [Google Scholar]
- J. Goodman, Introduction to Fourier Optics (Second Edition, McGraw-Hill, New York, 1966). [Google Scholar]
- J. W. Goodman, and R. W. Lawrence, “Digital image formation from electronically detected holograms” Appl. Phy. Lett. 11, 77–79 (1967). [NASA ADS] [CrossRef] [Google Scholar]
- U. Schnars, and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction” Appl. Opt. 33, 179–181 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- U. Schnars, and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms” Meas. Sci. Technol. 13, R85–R101 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- C.-S. Guo, L. Zhang, Z.-Y. Rong, and H.-T. Wang, “Effect of the fill factor of CCD pixels on digital holograms: comment on the papers “Frequency analysis of digital holography” and “Frequency analysis of digital holography with reconstruction by convolution”” Opt. Eng. 42, 2768–2771 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems” Opt. Eng. 48, 095801 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- J. W. Goodman, Statistical Optics (John Wiley and Sons, 1985). [Google Scholar]
- R. Bracewell, The Fourier Transform and its Applications (McGraw-Hill, New York, 1965). [Google Scholar]
- A. Stern, “Sampling of linear canonical transformed signals” Signal Process. 86, 1421–1425 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- T. M. Kreis, “Frequency analysis of digital holography” Opt. Eng. 41, 771–778 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- T. M. Kreis, “Frequency analysis of digital holography with reconstruction by convolution” Opt. Eng. 41, 1829–1839 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- T. M. Kreis, “Response to “Effect of the fill factor of CCD pixels on digital holograms: comment on the papers ‘Frequency analysis of digital holography’ and ‘Frequency analysis of digital holography with reconstruction by convolution’”” Opt. Eng. 42, 2772–2772 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- E. N. Leith, and J. Upatnieks, “Reconstructed wavefronts and communication theory” J. Opt. Soc. Am. 52, 1123–1128 (1962). [NASA ADS] [CrossRef] [Google Scholar]
- T. Latychevskaia, and H.-W. Fink, “Solution to the Twin Image Problem in Holography” Phys. Rev. Lett. 98, 233901 (2007). [CrossRef] [PubMed] [Google Scholar]
- D. S. Monaghan, D. P. Kelly, N. Pandey, and B. M. Hennelly, “Twin removal in digital holography using diffuse illumination” Opt. Lett. 34, 3610–3612 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- G.-S. Han, and S.-W. Kim, “Numerical correction of reference phases in phase-shifting interferometry by iterative least-squares fitting” Appl. Opt. 33, 7321–7325 (1994). [NASA ADS] [CrossRef] [Google Scholar]
- Z. Wang, and B. Han, “Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms” Opt. Lett. 29, 1671–1673 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- I. Yamaguchi, and T. Zhang, “Phase-shifting digital holography” Opt. Lett. 22, 1268–1270 (1997). [CrossRef] [PubMed] [Google Scholar]
- M. North Morris, J. Millerd, N. Brock, J. Hayes, and B. Saif, “Dynamic phase-shifting electronic speckle pattern interferometer”, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, H. P. Stahl, ed. (2005), Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol. 5869, 337–345. [Google Scholar]
- P. K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques (Wiley, New York, 2000). [Google Scholar]
- S. A. Collins-Jnr, “Lens-system diffraction integral written in terms of matrix optics” J. Opt. Soc. Am. 60, 1168–1177 (1970). [NASA ADS] [CrossRef] [Google Scholar]
- D. P. Kelly, J. E. Ward, U. Gopinathan, and J. T. Sheridan, “Controlling speckle using lenses and free space” Opt. Lett. 32, 3394–3396 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- J. J. Healy, B. M. Hennelly, and J. T. Sheridan, “Additional sampling criterion for the linear canonical transform” Opt. Lett. 33, 2599–2601 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- D. P. Kelly, B. M. Hennelly, W. T. Rhodes, and J. T. Sheridan, “Analytical and numerical analysis of linear optical systems” Opt. Eng. 45, 088201 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- F. Oktem, and H. M. Ozaktas, “Exact relation between continuous and discrete linear canonical transforms” IEEE Signal Proc. Let. 16, 727–730 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- J. J. Healy, and J. T. Sheridan, “Fast linear canonical transforms” J. Opt. Soc. Am. A 27, 21–30 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- J. J. Healy, and J. T. Sheridan, “Reevaluation of the direct method of calculating Fresnel and other linear canonical transforms” Opt. Lett. 35, 947–949 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- F. Gori, “Fresnel transform and sampling theorem” Opt. Commun. 39, 293–297 (1981). [NASA ADS] [CrossRef] [Google Scholar]
- L. Onural, “Sampling of the diffraction field” Appl. Opt. 39, 5929–5935 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- A. Stern, and B. Javidi, “Sampling in the light of Wigner distribution” J. Opt. Soc. Am. A 21, 360–366 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- A. Stern, and B. Javidi, “Sampling in the light of Wigner distribution: errata” J. Opt. Soc. Am. A 21, 2038–2038 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- A. Stern, and B. Javidi, “Analysis of practical sampling and reconstruction from Fresnel fields” Opt. Eng. 43, 239–250 (2004). [CrossRef] [Google Scholar]
- L. Onural, “Exact analysis of the effects of sampling of the scalar diffraction field” J. Opt. Soc. Am. A 24, 359–367 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- H. Jin, H. Wan, Y. Zhang, Y. Li, and P. Qiu, “The influence of structural parameters of CCD on the reconstruction image of digital holograms” J. Mod. Optic. 55, 2989–3000 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- G. T. D. Francia, “Degrees of freedom of an image” J. Opt. Soc. Am. 59, 799–803 (1969). [CrossRef] [Google Scholar]
- D. Mendlovic, and A. W. Lohmann, “Space–bandwidth product adaptation and its application to superresolution: fundamentals” J. Opt. Soc. Am. A 14, 558–562 (1997). [NASA ADS] [CrossRef] [Google Scholar]
- D. Mendlovic, A. W. Lohmann, and Z. Zalevsky, “Space–bandwidth product adaptation and its application to superresolution: examples” J. Opt. Soc. Am. A 14, 563–567 (1997). [CrossRef] [Google Scholar]
- R. Piestun, and D. A. B. Miller, “Electromagnetic degrees of freedom of an optical system” J. Opt. Soc. Am. A 17, 892–902 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- S. S. Kou, and C. J. Sheppard, “Imaging in digital holographic microscopy” Opt. Express 15, 13640–13648 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- H. T. Yura, and S. G. Hanson, “Optical beam wave propagation through complex optical systems” J. Opt. Soc. Am. A 4, 1931–1948 (1987). [CrossRef] [Google Scholar]
- H. T. Yura, S. G. Hanson, and T. P. Grum, “Speckle: statistics and interferometric decorrelation effects in complex ABCD optical systems” J. Opt. Soc. Am. A 10, 316–323 (1993). [NASA ADS] [CrossRef] [Google Scholar]
- D. P. Kelly, J. E. Ward, B. M. Hennelly, U. Gopinathan, F. T. O’Neill, and J. T. Sheridan, “Paraxial speckle-based metrology systems with an aperture” J. Opt. Soc. Am. A 23, 2861–2870 (2006). [CrossRef] [Google Scholar]
- D. P. Kelly, N. Pandey, B. M. Hennelly, and T. J. Naughton, “Quantization noise: An additional constraint for the extended sampling theorem”, in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2009), paper DWB12. [Google Scholar]
- B. R. Frieden, “Restoring with maximum likelihood and maximum entropy” J. Opt. Soc. Am. 62, 511–518 (1972). [NASA ADS] [CrossRef] [Google Scholar]
- B. R. Frieden, and J. J. Burke, “Restoring with maximum entropy, II: Superresolution of photographs of diffraction-blurred impulses” J. Opt. Soc. Am. 62, 1202–1210 (1972). [NASA ADS] [CrossRef] [Google Scholar]
- F. Soulez, L. Denis, Éric Thiébaut, C. Fournier, and C. Goepfert, “Inverse problem approach in particle digital holography: out-of-field particle detection made possible” J. Opt. Soc. Am. A 24, 3708–3716 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- C. Fournier, L. Denis, and T. Fournel, “On the single point resolution of on-axis digital holography” J. Opt. Soc. Am. A 27, 1856–1862 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, “Spatially resolved Fourier holographic light scattering angular spectroscopy” Opt. Lett. 30, 3305–3307 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- T. Meinecke, N. Sabitov, and S. Sinzinger, “Information extraction from digital holograms for particle flow analysis” Appl. Opt. 49, 2446–2455 (2010). [NASA ADS] [CrossRef] [Google Scholar]
- A. W. Lohmann, Optical Information Processing (Universitätsverlag Ilmenau, 2006). [Google Scholar]
- D. P. Kelly, J. T. Sheridan, and W. T. Rhodes, “Fundamental diffraction limitations in a paraxial 4-f imaging system with coherent and incoherent illumination” J. Opt. Soc. Am. A 24, 1911–1919 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- L. Xu, X. Peng, Z. Guo, J. Miao, and A. Asundi, “Imaging analysis of digital holography” Opt. Express 13, 2444–2452 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy” J. Opt. Soc. Am. A 23, 3177–3190 (2006). [CrossRef] [Google Scholar]
- A. Stern, and B. Javidi, “Space-bandwidth conditions for efficient phase-shifting digital holographic microscopy” J. Opt. Soc. Am. A 25, 736–741 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- D. S. M. N. P. Bryan, M. Hennelly, and D. P. Kelly, Information Optics and Photonics: Algorithms, Systems, and Applications (Springer, 2010). [Google Scholar]
- J. J. Healy, and J. T. Sheridan, “Space–bandwidth ratio as a means of choosing between Fresnel and other linear canonical transform algorithms” J. Opt. Soc. Am. A 28, 786–790 (2011). [NASA ADS] [CrossRef] [Google Scholar]
- L. P. Yaroslavskii, and N. S. Merzlyakov Methods of Digital Holography (Consultants Bureau, Los Angeles, 1980). [CrossRef] [Google Scholar]
- L. P. Yaroslavskii, and J. Astola (eds.) Advances in Signal Transforms: Theory and Applications (Hindawi Publishing Corporation, Cairo, 2007). [Google Scholar]
- Y. Hao, and A. Asundi, “Resolution analysis of a digital holography system” Appl. Opt. 50, 183–193 (2011). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.