Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 6, 2011
Article Number 11012s
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2011.11012s
Published online 18 April 2011
  1. S. T. Wu, and D. K. Yang, Reflective Liquid Crystal Displays (John Wiley & Sons Inc., Chichester, 2005). [Google Scholar]
  2. J. Turunen, and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, Berlin, 1997). [Google Scholar]
  3. R. Dou, and M. K. Giles, “Closed-loop adaptive optics system with a liquid crystal television as a phase retarder” Opt. Lett. 20, 1583–1585 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  4. W. Osten, C. Kohler, and J. Liesener, “Evaluation and application of spatial light modulators for optical metrology” Opt. Pura Apl. 38, 71–81 (2005). [Google Scholar]
  5. A. De Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude and B. Drévillon, “Optimized Mueller polarimeter with liquid crystal” Opt. Lett. 28, 616–618 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  6. M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, et. al., “Polarimetric imaging for the diagnosis of cervical cancer” Phys. Status Solidi 5, 5 (2008). [NASA ADS] [Google Scholar]
  7. A. Hermerschmidt, S. Osten, S. Krüger, and T. Blümel, “Wave front generation using a phase-only modulating liquid-crystalbased micro-display with HDTV resolution” Proc. SPIE 6584, 65840E (2007). [NASA ADS] [CrossRef] [Google Scholar]
  8. J. R. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarčević, et. al., “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM” IEEE Photonic Tech. L. 20, 60–62 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  9. A. Lizana, I. Moreno, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, “Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics” Opt. Express 16, 16711–16722 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  10. A. Lizana, I. Moreno, A. Márquez, E. Also, C. Iemmi, J. Campos, and M. J. Yzuel, “Influence of the temporal fluctuations phenomena on the ECB LCoS performance” Proc. SPIE 7442, 74420G-1 (2009). [Google Scholar]
  11. J. E. Wolfe, and R. A. Chipman, “Polarimetric characterization of liquid-crystal-on-silicon panels” Appl. Opt. 45, 1688–1703 (2006). [CrossRef] [Google Scholar]
  12. A. Lizana, I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, “Time-resolved Mueller matrix analysis of a liquid crystal on silicon display” Appl. Opt. 47, 4267–4274 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  13. A. Lizana, A. Márquez, L. Lobato, Y. Rodange, I. Moreno, C. Iemmi, and J. Campos, “The minimum Euclidean distance principle applied to improve the modulation diffraction efficiency in digitally controlled spatial light modulators” Opt. Express 18, 10581–10593 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  14. I. Moreno, J. Campos, C. Gorecki, and M. J. Yzuel, “Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition” Jpn. J. Appl. Phys. 34, 6423–6432 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  15. R. D. Juday, “Optical realizable filters and the minimum Euclidean distance principle” Appl. Opt. 32, 5100–5111 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  16. R. D. Juday, “Generality of matched filtering and minimum Euclidean distance projection for optical pattern recognition” J. Opt. Soc. Am. A 18, 1882–1896 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  17. I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, “Modulation light efficiency of diffractive lenses displayed onto a restricted phase-mostly modulation display” Appl. Opt. 43, 6278–6284 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  18. A. Márquez, C. Iemmi, I. Moreno, J. Campos, and M. J. Yzuel, “Anamorphic and spatial frequency dependent phase modulation on liquid crystal displays. Optimization of the modulation diffraction efficiency” Opt. Express 13, 2111–2119 (2005). [CrossRef] [Google Scholar]
  19. A. Márquez, I. Moreno, C. Iemmi, J. Campos, and M. J. Yzuel, “Electrical origin and compensation for two sources of degradation of the spatial frequency response exhibited by liquid crystal displays” Opt. Eng. 46, 114001, 1–11 (2007). [Google Scholar]
  20. H. J. Coufal, D. Psaltis, and B. T. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000). [CrossRef] [Google Scholar]
  21. M. L. Hsieh, K. Y. Hsu, E. G. Paek, and C. L. Wilson, “Modulation transfer function of a liquid crystal spatial light modulator” Opt. Commun. 170, 221–227 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  22. M. L. Hsieh, E. G. Paek, C. L. Wilson, and K. Y. Hsu, “Performance enhancement of a joint transform correlator using the directionality of a spatial light modulator” Opt. Eng. 38, 2118–2121 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  23. P. Grother, and D. Casasent, “Modulation transfer function measurement method for electrically addressed spatial light modulators” Appl. Opt. 40, 5253–5259 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  24. Z. Zhang, G. Lu, and F. T. S. Yu, “Simple method for measuring phase modulation in liquid crystal televisions” Opt. Eng. 33, 3018–3022 (1994). [CrossRef] [Google Scholar]
  25. J. Reményi, P. Vàrhegyi, L. Domján, P. Koppa, and E. Lörincz, “Amplitude, Phase, and Hybrid Ternary Modulation Modes of a Twisted-Nematic Liquid-Crystal Display at Ȉ400 nm” Appl. Opt. 42, 3428–3434 (2003). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.