Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 5, 2010
Article Number 10036s
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2010.10036s
Published online 01 September 2010
  1. L. Dhar, M. Schnoes, T. Wysocki, H. Bair, M. Schnoes, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms” Appl. Phys. Lett. 73, 1337–1339 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  2. L. Dhar, A. Hale, H. Katz, M. Schilling, M. Schnoes, and F. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage” Opt. Lett. 24, 487–489 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  3. Y. Usami, T. Sasaki, M. Kamo, S. Yamada, H. Suzuki, and M. Yumoto, “Low angular distortion due to shrinkage after fixing in new holographic recording material” Proc. SPIE 6620, 66201H–66201H-8 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  4. A. Zlotnik, S. Ben-Yaish, and Z. Zalevsky, “Extending the depth of focus for enhanced three-dimensional imaging and profilometry: an overview” Appl. Opt. 48, H105–H112 (2009). [Google Scholar]
  5. P. Ferraro, M. Paturzo, P. Memmolo, and A. Finizio, “Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms” Opt. Lett. 34, 2787–2780 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  6. M. Paturzo, and P. Ferraro, “Creating an extended focus image of a tilted object in Fourier digital holography” Opt. Express 17, 20546–20552 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  7. T. Muroi, N. Kinoshita, N. Ishii, K. Kamijo, and N. Shimidzu, “Optical compensation of distorted data image caused by interference fringe distortion in holographic data storage” Appl. Opt. 48, 3681–3690 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  8. G. Barbastathis, and D. Psaltis, “Volume holographic multiplexing methods” in Holographic Data Storage, H. Coufal, D. Psaltis, and G. Sincerbox, eds., 21–62 (Springer-Verlag, Berlin, 2000). [NASA ADS] [CrossRef] [Google Scholar]
  9. M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, “Improvement in temperature tolerance of holographic data storage using wavelength tunable laser” Jpn. J. Appl. Phys. 45, 1297–1304 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  10. G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, and C. M. Jefferson, “Noise reduction of page-oriented data storage by inverse filtering during recording” Opt. Lett. 23, 289–291 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  11. D. Woods, and K. Malang, “Micro-positioning movement of holographic data storage system components” U. S. Patent US7116626 (2006). [Google Scholar]
  12. N. Ishii, N. Kinoshita, T. Muroi, K. Kamijo, and N. Shimidzu, “Method of phase compensation for holographic data storage” Jpn. J. Appl. Phys. 46, 3862–3866 (2007). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.